Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Nat Commun ; 15(1): 421, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212308

ABSTRACT

Diabetic retinopathy can be prevented with screening and early detection. We hypothesized that autonomous artificial intelligence (AI) diabetic eye exams at the point-of-care would increase diabetic eye exam completion rates in a racially and ethnically diverse youth population. AI for Children's diabetiC Eye ExamS (NCT05131451) is a parallel randomized controlled trial that randomized youth (ages 8-21 years) with type 1 and type 2 diabetes to intervention (autonomous artificial intelligence diabetic eye exam at the point of care), or control (scripted eye care provider referral and education) in an academic pediatric diabetes center. The primary outcome was diabetic eye exam completion rate within 6 months. The secondary outcome was the proportion of participants who completed follow-through with an eye care provider if deemed appropriate. Diabetic eye exam completion rate was significantly higher (100%, 95%CI: 95.5%, 100%) in the intervention group (n = 81) than the control group (n = 83) (22%, 95%CI: 14.2%, 32.4%)(p < 0.001). In the intervention arm, 25/81 participants had an abnormal result, of whom 64% (16/25) completed follow-through with an eye care provider, compared to 22% in the control arm (p < 0.001). Autonomous AI increases diabetic eye exam completion rates in youth with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Child , Humans , Adolescent , Diabetic Retinopathy/diagnosis , Follow-Up Studies , Artificial Intelligence , Referral and Consultation
3.
Ophthalmol Sci ; 4(3): 100420, 2024.
Article in English | MEDLINE | ID: mdl-38284099

ABSTRACT

Topic: The goal of this review was to summarize the current level of evidence on biomarkers to quantify diabetic retinal neurodegeneration (DRN) and diabetic macular edema (DME). Clinical relevance: With advances in retinal diagnostics, we have more data on patients with diabetes than ever before. However, the staging system for diabetic retinal disease is still based only on color fundus photographs and we do not have clear guidelines on how to incorporate data from the relatively newer modalities into clinical practice. Methods: In this review, we use a Delphi process with experts to identify the most promising modalities to identify DRN and DME. These included microperimetry, full-field flash electroretinogram, spectral-domain OCT, adaptive optics, and OCT angiography. We then used a previously published method of determining the evidence level to complete detailed evidence grids for each modality. Results: Our results showed that among the modalities evaluated, the level of evidence to quantify DRN and DME was highest for OCT (level 1) and lowest for adaptive optics (level 4). Conclusion: For most of the modalities evaluated, prospective studies are needed to elucidate their role in the management and outcomes of diabetic retinal diseases. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

4.
J Diabetes Sci Technol ; 18(2): 302-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37798955

ABSTRACT

OBJECTIVE: In the pivotal clinical trial that led to Food and Drug Administration De Novo "approval" of the first fully autonomous artificial intelligence (AI) diabetic retinal disease diagnostic system, a reflexive dilation protocol was used. Using real-world deployment data before implementation of reflexive dilation, we identified factors associated with nondiagnostic results. These factors allow a novel predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori to maximize efficiency and patient satisfaction. METHODS: Retrospective review of patients who were assessed with autonomous AI at Johns Hopkins Medicine (8/2020 to 5/2021). We constructed a multivariable logistic regression model for nondiagnostic results to compare characteristics of patients with and without diagnostic results, using adjusted odds ratio (aOR). P < .05 was considered statistically significant. RESULTS: Of 241 patients (59% female; median age = 59), 123 (51%) had nondiagnostic results. In multivariable analysis, type 1 diabetes (T1D, aOR = 5.82, 95% confidence interval [CI]: 1.45-23.40, P = .01), smoking (aOR = 2.86, 95% CI: 1.36-5.99, P = .005), and age (every 10-year increase, aOR = 2.12, 95% CI: 1.62-2.77, P < .001) were associated with nondiagnostic results. Following feature elimination, a predictive model was created using T1D, smoking, age, race, sex, and hypertension as inputs. The model showed an area under the receiver-operator characteristics curve of 0.76 in five-fold cross-validation. CONCLUSIONS: We used factors associated with nondiagnostic results to design a novel, predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori. This new workflow has the potential to be more efficient than reflexive dilation, thus maximizing the number of at-risk patients receiving their diabetic retinal examinations.


Subject(s)
Delivery of Health Care, Integrated , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Female , Humans , Male , Middle Aged , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Dilatation , Risk Factors , United States , Workflow , Retrospective Studies , Clinical Trials as Topic
5.
NPJ Digit Med ; 6(1): 185, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803209

ABSTRACT

Autonomous AI systems in medicine promise improved outcomes but raise concerns about liability, regulation, and costs. With the advent of large-language models, which can understand and generate medical text, the urgency for addressing these concerns increases as they create opportunities for more sophisticated autonomous AI systems. This perspective explores the liability implications for physicians, hospitals, and creators of AI technology, as well as the evolving regulatory landscape and payment models. Physicians may be favored in malpractice cases if they follow rigorously validated AI recommendations. However, AI developers may face liability for failing to adhere to industry-standard best practices during development and implementation. The evolving regulatory landscape, led by the FDA, seeks to ensure transparency, evaluation, and real-world monitoring of AI systems, while payment models such as MPFS, NTAP, and commercial payers adapt to accommodate them. The widespread adoption of autonomous AI systems can potentially streamline workflows and allow doctors to concentrate on the human aspects of healthcare.

6.
Ophthalmol Sci ; 3(4): 100394, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37885755

ABSTRACT

The rapid progress of large language models (LLMs) driving generative artificial intelligence applications heralds the potential of opportunities in health care. We conducted a review up to April 2023 on Google Scholar, Embase, MEDLINE, and Scopus using the following terms: "large language models," "generative artificial intelligence," "ophthalmology," "ChatGPT," and "eye," based on relevance to this review. From a clinical viewpoint specific to ophthalmologists, we explore from the different stakeholders' perspectives-including patients, physicians, and policymakers-the potential LLM applications in education, research, and clinical domains specific to ophthalmology. We also highlight the foreseeable challenges of LLM implementation into clinical practice, including the concerns of accuracy, interpretability, perpetuating bias, and data security. As LLMs continue to mature, it is essential for stakeholders to jointly establish standards for best practices to safeguard patient safety. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

7.
NPJ Digit Med ; 6(1): 184, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794054

ABSTRACT

Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37-1.80) than control (1.14 encounters/hour, 95% CI: 1.02-1.25), p < 0.00; the secondary endpoint (productivity in all patients) is also met. Autonomous AI increases healthcare system productivity, which could potentially increase access and reduce health disparities. ClinicalTrials.gov NCT05182580.

8.
NPJ Digit Med ; 6(1): 170, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700029

ABSTRACT

Health equity is a primary goal of healthcare stakeholders: patients and their advocacy groups, clinicians, other providers and their professional societies, bioethicists, payors and value based care organizations, regulatory agencies, legislators, and creators of artificial intelligence/machine learning (AI/ML)-enabled medical devices. Lack of equitable access to diagnosis and treatment may be improved through new digital health technologies, especially AI/ML, but these may also exacerbate disparities, depending on how bias is addressed. We propose an expanded Total Product Lifecycle (TPLC) framework for healthcare AI/ML, describing the sources and impacts of undesirable bias in AI/ML systems in each phase, how these can be analyzed using appropriate metrics, and how they can be potentially mitigated. The goal of these "Considerations" is to educate stakeholders on how potential AI/ML bias may impact healthcare outcomes and how to identify and mitigate inequities; to initiate a discussion between stakeholders on these issues, in order to ensure health equity along the expanded AI/ML TPLC framework, and ultimately, better health outcomes for all.

9.
NPJ Digit Med ; 6(1): 53, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973403

ABSTRACT

The effectiveness of using artificial intelligence (AI) systems to perform diabetic retinal exams ('screening') on preventing vision loss is not known. We designed the Care Process for Preventing Vision Loss from Diabetes (CAREVL), as a Markov model to compare the effectiveness of point-of-care autonomous AI-based screening with in-office clinical exam by an eye care provider (ECP), on preventing vision loss among patients with diabetes. The estimated incidence of vision loss at 5 years was 1535 per 100,000 in the AI-screened group compared to 1625 per 100,000 in the ECP group, leading to a modelled risk difference of 90 per 100,000. The base-case CAREVL model estimated that an autonomous AI-based screening strategy would result in 27,000 fewer Americans with vision loss at 5 years compared with ECP. Vision loss at 5 years remained lower in the AI-screened group compared to the ECP group, in a wide range of parameters including optimistic estimates biased toward ECP. Real-world modifiable factors associated with processes of care could further increase its effectiveness. Of these factors, increased adherence with treatment was estimated to have the greatest impact.

10.
NPJ Digit Med ; 5(1): 177, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463327

ABSTRACT

The "Taxonomy of Artificial Intelligence for Medical Services and Procedures" became part of the Current Procedural Terminology (CPT®) code set effective January 1, 2022. It provides a framework for discrete and differentiable CPT codes which; are consistent with the features of the devices' output, characterize interaction between the device and the physician or other qualified health care professional, and foster appropriate payment. Descriptors include "Assistive", "Augmentative", and "Autonomous". As software increasingly augments the provision of medical services the taxonomy will foster consistent language in coding enabling patient, provider, and payer access to the benefits of innovation.

11.
Transl Vis Sci Technol ; 11(9): 17, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36135979

ABSTRACT

Purpose: Despite popularity of optical coherence tomography (OCT) in glaucoma studies, it's unclear how well OCT-derived metrics compare to traditional measures of retinal ganglion cell (RGC) abundance. Here, Diversity Outbred (J:DO) mice are used to directly compare ganglion cell complex (GCC) thickness measured by OCT to metrics of retinal anatomy measured ex vivo with retinal wholemounts and optic nerve histology. Methods: J:DO mice (n = 48) underwent fundoscopic and OCT examinations, with automated segmentation of GCC thickness. RGC axons were quantified from para-phenylenediamine-stained optic nerve cross-sections and somas from BRN3A-immunolabeled retinal wholemounts, with total inner retinal cellularity assessed by TO-PRO and subsequent hematoxylin staining. Results: J:DO tissues lacked overt disease. GCC thickness, RGC abundance, and total cell abundance varied broadly across individuals. GCC thickness correlated significantly to RGC somal density (r = 0.58) and axon number (r = 0.44), but not total cell density. Retinal area and nerve cross-sectional area varied widely. No metrics were significantly influenced by sex. In bilateral comparisons, GCC thickness (r = 0.95), axon (r = 0.72), and total cell density (r = 0.47) correlated significantly within individuals. Conclusions: Amongst outbred mice, OCT-derived measurements of GCC thickness correlate significantly to RGC somal and axon abundance. Factors limiting correlation are likely both biological and methodological, including differences in retinal area that distort sampling-based estimates of RGC abundance. Translational Relevance: There are significant-but imperfect-correlations between GCC thickness and RGC abundance across genetic contexts in mice, highlighting valid uses and ongoing challenges for meaningful use of OCT-derived metrics.


Subject(s)
Glaucoma , Optic Nerve Diseases , Animals , Glaucoma/diagnosis , Hematoxylin , Mice , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence/methods
12.
NPJ Digit Med ; 5(1): 100, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35854145

ABSTRACT

The use of digital technology is increasing rapidly across surgical specialities, yet there is no consensus for the term 'digital surgery'. This is critical as digital health technologies present technical, governance, and legal challenges which are unique to the surgeon and surgical patient. We aim to define the term digital surgery and the ethical issues surrounding its clinical application, and to identify barriers and research goals for future practice. 38 international experts, across the fields of surgery, AI, industry, law, ethics and policy, participated in a four-round Delphi exercise. Issues were generated by an expert panel and public panel through a scoping questionnaire around key themes identified from the literature and voted upon in two subsequent questionnaire rounds. Consensus was defined if >70% of the panel deemed the statement important and <30% unimportant. A final online meeting was held to discuss consensus statements. The definition of digital surgery as the use of technology for the enhancement of preoperative planning, surgical performance, therapeutic support, or training, to improve outcomes and reduce harm achieved 100% consensus agreement. We highlight key ethical issues concerning data, privacy, confidentiality and public trust, consent, law, litigation and liability, and commercial partnerships within digital surgery and identify barriers and research goals for future practice. Developers and users of digital surgery must not only have an awareness of the ethical issues surrounding digital applications in healthcare, but also the ethical considerations unique to digital surgery. Future research into these issues must involve all digital surgery stakeholders including patients.

15.
Ophthalmology ; 129(2): e14-e32, 2022 02.
Article in English | MEDLINE | ID: mdl-34478784

ABSTRACT

IMPORTANCE: The development of artificial intelligence (AI) and other machine diagnostic systems, also known as software as a medical device, and its recent introduction into clinical practice requires a deeply rooted foundation in bioethics for consideration by regulatory agencies and other stakeholders around the globe. OBJECTIVES: To initiate a dialogue on the issues to consider when developing a bioethically sound foundation for AI in medicine, based on images of eye structures, for discussion with all stakeholders. EVIDENCE REVIEW: The scope of the issues and summaries of the discussions under consideration by the Foundational Principles of Ophthalmic Imaging and Algorithmic Interpretation Working Group, as first presented during the Collaborative Community on Ophthalmic Imaging inaugural meeting on September 7, 2020, and afterward in the working group. FINDINGS: Artificial intelligence has the potential to improve health care access and patient outcome fundamentally while decreasing disparities, lowering cost, and enhancing the care team. Nevertheless, substantial concerns exist. Bioethicists, AI algorithm experts, as well as the Food and Drug Administration and other regulatory agencies, industry, patient advocacy groups, clinicians and their professional societies, other provider groups, and payors (i.e., stakeholders) working together in collaborative communities to resolve the fundamental ethical issues of nonmaleficence, autonomy, and equity are essential to attain this potential. Resolution impacts all levels of the design, validation, and implementation of AI in medicine. Design, validation, and implementation of AI warrant meticulous attention. CONCLUSIONS AND RELEVANCE: The development of a bioethically sound foundation may be possible if it is based in the fundamental ethical principles of nonmaleficence, autonomy, and equity for considerations for the design, validation, and implementation for AI systems. Achieving such a foundation will be helpful for continuing successful introduction into medicine before consideration by regulatory agencies. Important improvements in accessibility and quality of health care, decrease in health disparities, and lower cost thereby can be achieved. These considerations should be discussed with all stakeholders and expanded on as a useful initiation of this dialogue.


Subject(s)
Artificial Intelligence , Diagnostic Imaging , Eye Diseases/diagnostic imaging , Optical Imaging , Bioethics , Humans , Software , Translational Research, Biomedical
18.
PLoS One ; 16(9): e0257836, 2021.
Article in English | MEDLINE | ID: mdl-34587216

ABSTRACT

IMPORTANCE: Efforts are underway to incorporate retinal neurodegeneration in the diabetic retinopathy severity scale. However, there is no established measure to quantify diabetic retinal neurodegeneration (DRN). OBJECTIVE: We compared total retinal, macular retinal nerve fiber layer (mRNFL) and ganglion cell-inner plexiform layer (GC-IPL) thickness among participants with and without diabetes (DM) in a population-based cohort. DESIGN/SETTING/PARTICIPANTS: Cross-sectional analysis, using the UK Biobank data resource. Separate general linear mixed models (GLMM) were created using DM and glycated hemoglobin as predictor variables for retinal thickness. Sub-analyses included comparing thickness measurements for patients with no/mild diabetic retinopathy (DR) and evaluating factors associated with retinal thickness in participants with and without diabetes. Factors found to be significantly associated with DM or thickness were included in a multiple GLMM. EXPOSURE: Diagnosis of DM was determined via self-report of diagnosis, medication use, DM-related complications or glycated hemoglobin level of ≥ 6.5%. MAIN OUTCOMES AND MEASURES: Total retinal, mRNFL and GC-IPL thickness. RESULTS: 74,422 participants (69,985 with no DM; 4,437 with DM) were included. Median age was 59 years, 46% were men and 92% were white. Participants with DM had lower total retinal thickness (-4.57 µm, 95% CI: -5.00, -4.14; p<0.001), GC-IPL thickness (-1.73 µm, 95% CI: -1.86, -1.59; p<0.001) and mRNFL thickness (-0.68 µm, 95% CI: -0.81, -0.54; p<0.001) compared to those without DM. After adjusting for co-variates, in the GLMM, total retinal thickness was 1.99 um lower (95% CI: -2.47, -1.50; p<0.001) and GC-IPL was 1.02 µm lower (95% CI: -1.18, -0.87; p<0.001) among those with DM compared to without. mRNFL was no longer significantly different (p = 0.369). GC-IPL remained significantly lower, after adjusting for co-variates, among those with DM compared to those without DM when including only participants with no/mild DR (-0.80 µm, 95% CI: -0.98, -0.62; p<0.001). Total retinal thickness decreased 0.40 µm (95% CI: -0.61, -0.20; p<0.001), mRNFL thickness increased 0.20 µm (95% CI: 0.14, 0.27; p<0.001) and GC-IPL decreased 0.26 µm (95% CI: -0.33, -0.20; p<0.001) per unit increase in A1c after adjusting for co-variates. Among participants with diabetes, age, DR grade, ethnicity, body mass index, glaucoma, spherical equivalent, and visual acuity were significantly associated with GC-IPL thickness. CONCLUSION: GC-IPL was thinner among participants with DM, compared to without DM. This difference persisted after adjusting for confounding variables and when considering only those with no/mild DR. This confirms that GC-IPL thinning occurs early in DM and can serve as a useful marker of DRN.


Subject(s)
Diabetes Mellitus/metabolism , Diabetic Retinopathy/diagnostic imaging , Glycated Hemoglobin/metabolism , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Adult , Aged , Biological Specimen Banks , Cross-Sectional Studies , Diabetic Retinopathy/metabolism , Female , Humans , Male , Middle Aged , Nerve Fibers , Self Report , Severity of Illness Index , United Kingdom
19.
J Neurosci Methods ; 360: 109267, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34157370

ABSTRACT

BACKGROUND: Changes in choroidal thickness are associated with various ocular diseases, and the choroid can be imaged using spectral-domain optical coherence tomography (SD-OCT) and enhanced depth imaging OCT (EDI-OCT). NEW METHOD: Eighty macular SD-OCT volumes from 80 patients were obtained using the Zeiss Cirrus machine. Eleven additional control subjects had two Cirrus scans done in one visit along with enhanced depth imaging (EDI-OCT) using the Heidelberg Spectralis machine. To automatically segment choroidal layers from the OCT volumes, our graph-theoretic approach was utilized. The segmentation results were compared with reference standards from two independent graders, and the accuracy of automated segmentation was calculated using unsigned/signed border positioning/thickness errors and Dice similarity coefficient (DSC). The repeatability and reproducibility of our choroidal thicknesses were determined by intraclass correlation coefficient (ICC), coefficient of variation (CV), and repeatability coefficient (RC). RESULTS: The mean unsigned/signed border positioning errors for the choroidal inner and outer surfaces are 3.39 ± 1.26 µm (mean ± standard deviation)/- 1.52 ± 1.63 µm and 16.09 ± 6.21 µm/4.73 ± 9.53 µm, respectively. The mean unsigned/signed choroidal thickness errors are 16.54 ± 6.47 µm/6.25 ± 9.91 µm, and the mean DSC is 0.949 ± 0.025. The ICC (95% confidence interval), CV, RC values are 0.991 (0.977-0.997), 2.48%, 14.25 µm for the repeatability and 0.991 (0.977-0.997), 2.49%, 14.30 µm for the reproducibility studies, respectively. COMPARISON WITH EXISTING METHOD(S): The proposed method outperformed our previous method using choroidal vessel segmentation and inter-grader variability. CONCLUSIONS: This automated segmentation method can reliably measure choroidal thickness using different OCT platforms.


Subject(s)
Choroid , Tomography, Optical Coherence , Choroid/diagnostic imaging , Humans , Reproducibility of Results
20.
JAMA Ophthalmol ; 139(7): 791-795, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34042939

ABSTRACT

IMPORTANCE: Diabetic retinopathy is a major complication of diabetes for which regular screening improves visual health outcomes, yet adherence to screening is suboptimal. OBJECTIVE: To assess disparities in diabetic eye examination completion rates and evaluate barriers in those not previously screened. DESIGN, SETTING, AND PARTICIPANTS: In this cohort study at a single academic center (Johns Hopkins Hospital pediatric diabetes center in Baltimore, Maryland) from December 2018 to November 2019, youths with type 1 or type 2 diabetes who met criteria for diabetic retinopathy screening and were enrolled in a prospective observational trial implementing point-of-care diabetic retinopathy screening were asked about prior diabetic retinopathy screening. MAIN OUTCOMES AND MEASURES: Demographic and clinical characteristics were compared between those who did and did not have a previous diabetic eye examination and stratified according to race/ethnicity, using t tests and χ2 tests. Multivariate logistic regression was used to analyze the association between race/ethnicity, screening, and other social determinants of health. A questionnaire assessing barriers to screening adherence was administered. RESULTS: Of 149 participants (76 male patients [51.0%]; mean [SD] age, 14.5 [2.3] years), 51 (34.2%) had not had a prior diabetic eye examination. These individuals were more likely than those who had prior diabetic eye examinations to be non-White youths (38 [75%] vs 31 [32%]; P < .001) and have type 2 diabetes (38 [75%] vs 10 [10%]; P < .001), Medicaid or public insurance (43 [84%] vs 31 [32%]; P < .001), lower household income (annual income ≤$25 000, 21 [41%] vs 9 [9%]; P < .001), and parents with education levels of high school or less (29 [67%] vs 22 [35%]; P < .001). The main barriers reported included not recalling being recommended to obtain a diabetic eye examination (19 [56%]), difficulty finding time for an additional appointment (10 [29%]), and transportation issues (7 [20%]). Minority youths were less likely to have a previous diabetic eye examination (non-White, 34 [46%] vs White, 64 [85%]; P < .001) and more likely to have diabetic retinopathy (11 [15%] v 2 [3%]; P = .008). Minority youths were less likely to get diabetic eye examinations even after adjusting for insurance, household income, and parental education level (odds ratio, 0.29 [95% CI, 0.10-0.79]; P = .02). CONCLUSIONS AND RELEVANCE: In this cohort study, non-White youths were less likely to undergo diabetic eye examinations yet more likely to have diabetic retinopathy compared with White youths. Addressing barriers to diabetic retinopathy screening may improve access to diabetic eye examination and facilitate early detection.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Adolescent , Child , Cohort Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Retinopathy/complications , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/epidemiology , Ethnicity , Female , Humans , Male , Mass Screening , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...