Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
JACC Basic Transl Sci ; 8(9): 1160-1176, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37791301

ABSTRACT

Chronic kidney disease is a global health problem affecting 10% to 12% of the population. Uremic cardiomyopathy is often characterized by left ventricular hypertrophy, fibrosis, and diastolic dysfunction. Dysregulation of neuregulin-1ß signaling in the heart is a known contributor to heart failure. The systemically administered recombinant human neuregulin-1ß for 10 days in our 5/6 nephrectomy-induced model of chronic kidney disease alleviated the progression of uremic cardiomyopathy and kidney dysfunction in type 4 cardiorenal syndrome. The currently presented positive preclinical data warrant clinical studies to confirm the beneficial effects of recombinant human neuregulin-1ß in patients with chronic kidney disease.

2.
Front Physiol ; 14: 1109452, 2023.
Article in English | MEDLINE | ID: mdl-37064885

ABSTRACT

Introduction: Ventilator-induced lung injury (VILI) may aggravate critical illness. Although angiotensin-converting enzyme (ACE) inhibition has beneficial effects in ventilator-induced lung injury, its clinical application is impeded by concomitant hypotension. We hypothesized that the aminopeptidase inhibitor ALT-00 may oppose the hypotension induced by an angiotensin-converting enzyme inhibitor, and that this combination would activate the alternative renin-angiotensin system (RAS) axis to counteract ventilator-induced lung injury. Methods: In separate experiments, C57BL/6 mice were mechanically ventilated with low (LVT, 6 mL/kg) and high tidal volumes (HVT, 30 mL/kg) for 4 h or remained unventilated (sham). High tidal volume-ventilated mice were treated with lisinopril (0.15 µg/kg/min) ± ALT-00 at 2.7, 10 or 100 µg/kg/min. Blood pressure was recorded at baseline and after 4 h. Lung histology was evaluated for ventilator-induced lung injury and the angiotensin (Ang) metabolite profile in plasma (equilibrium levels of Ang I, Ang II, Ang III, Ang IV, Ang 1-7, and Ang 1-5) was measured with liquid chromatography tandem mass spectrometry at the end of the experiment. Angiotensin concentration-based markers for renin, angiotensin-converting enzyme and alternative renin-angiotensin system activities were calculated. Results: High tidal volume-ventilated mice treated with lisinopril showed a significant drop in the mean arterial pressure at 4 h compared to baseline, which was prevented by adding ALT-00 at 10 and 100 µg/kg/min. Ang I, Ang II and Ang 1-7 plasma equilibrium levels were elevated in the high tidal volumes group versus the sham group. Lisinopril reduced Ang II and slightly increased Ang I and Ang 1-7 levels versus the untreated high tidal volumes group. Adding ALT-00 at 10 and 100 µg/kg/min increased Ang I and Ang 1-7 levels versus the high tidal volume group, and partly prevented the downregulation of Ang II levels caused by lisinopril. The histological lung injury score was higher in the high tidal volume group versus the sham and low tidal volume groups, and was attenuated by lisinopril ± ALT-00 at all dose levels. Conclusion: Combined angiotensin-converting enzyme plus aminopeptidase inhibition prevented systemic hypotension and maintained the protective effect of lisinopril. In this study, a combination of lisinopril and ALT-00 at 10 µg/kg/min appeared to be the optimal approach, which may represent a promising strategy to counteract ventilator-induced lung injury that merits further exploration.

3.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36768147

ABSTRACT

Telomerase reverse transcriptase (TERT) plays a key role in the maintenance of telomere DNA length. The rs10069690 single nucleotide variant, located in intron 4 of TERT, was found to be associated with telomere length and the risk of estrogen receptor-negative but not-positive breast cancer. This study aimed at analysis of the association of rs10069690 genotype and TERT expression with the risk, age at onset, prognosis, and clinically and molecularly relevant subtypes of breast cancer. Accordingly, rs10069690 was genotyped in a hospital-based case-control study of 403 female breast cancer patients and 246 female controls of a Central European (Austrian) study population, and the mRNA levels of TERT were quantified in 106 primary breast tumors using qRT-PCR. We found that in triple-negative breast cancer patients, the minor rs10069690 TT genotype tended to be associated with an increased breast cancer risk (OR, 1.87; 95% CI, 0.75-4.71; p = 0.155) and was significantly associated with 11.7 years younger age at breast cancer onset (p = 0.0002), whereas the CC genotype was associated with a poor brain metastasis-free survival (p = 0.009). Overall, our data show that the rs10069690 CC genotype and a high TERT expression tended to be associated with each other and with a poor prognosis. Our findings indicate a key role of rs10069690 in triple-negative breast cancer.


Subject(s)
Telomerase , Triple Negative Breast Neoplasms , Female , Humans , Age of Onset , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Telomerase/genetics , Triple Negative Breast Neoplasms/genetics
4.
Basic Res Cardiol ; 117(1): 42, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008727

ABSTRACT

Sympathetic nerve denervation after myocardial infarction (MI) predicts risk of sudden cardiac death. Therefore, therapeutic approaches limit infarct size, improving adverse remodeling and restores sympathetic innervation have a great clinical potential. Remote ischemic perconditioning (RIPerc) could markedly attenuate MI-reperfusion (MIR) injury. In this study, we aimed to assess its effects on cardiac sympathetic innervation and metabolism. Transient myocardial ischemia is induced by ligature of the left anterior descending coronary artery (LAD) in male Sprague-Dawley rats, and in vivo cardiac 2-[18F]FDG and [11C]mHED PET scans were performed at 14-15 days after ischemia. RIPerc was induced by three cycles of 5-min-long unilateral hind limb ischemia and intermittent 5 min of reperfusion during LAD occlusion period. The PET quantitative parameters were quantified in parametric polar maps. This standardized format facilitates the regional radioactive quantification in deficit regions to remote areas. The ex vivo radionuclide distribution was additionally identified using autoradiography. Myocardial neuron density (tyrosine hydroxylase positive staining) and chondroitin sulfate proteoglycans (CSPG, inhibiting neuron regeneration) expression were assessed by immunohistochemistry. There was no significant difference in the mean hypometabolism 2-[18F]FDG uptake ratio (44.6 ± 4.8% vs. 45.4 ± 4.4%) between MIR rats and MIR + RIPerc rats (P > 0.05). However, the mean [11C]mHED nervous activity of denervated myocardium was significantly elevated in MIR + RIPerc rats compared to the MIR rats (35.9 ± 7.1% vs. 28.9 ± 2.3%, P < 0.05), coupled with reduced denervated myocardium area (19.5 ± 5.3% vs. 27.8 ± 6.6%, P < 0.05), which were associated with preserved left-ventricular systolic function, a less reduction in neuron density, and a significant reduction in CSPG and CD68 expression in the myocardium. RIPerc presented a positive effect on cardiac sympathetic-nerve innervation following ischemia, but showed no significant effect on myocardial metabolism.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Fluorodeoxyglucose F18 , Male , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
5.
Crit Care Med ; 50(9): e696-e706, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35191411

ABSTRACT

OBJECTIVES: Ventilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies. DESIGN: Animal study. SETTING: University research laboratory. SUBJECTS: C57BL/6 mice. INTERVENTIONS: Anesthetized mice ( n = 12-18 per group) were mechanically ventilated with low tidal volume (LV T , 6 mL/kg), high tidal volume (HV T , 15 mL/kg), or very high tidal volume (VHV T , 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHV T groups received infusions of 60 µg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril. MEASUREMENTS AND MAIN RESULTS: VILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HV T group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI. CONCLUSIONS: VILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HV T group, whereas classical RAS activation prevailed with VHV T ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.


Subject(s)
Renin-Angiotensin System , Ventilator-Induced Lung Injury , Angiotensin II , Animals , Captopril/metabolism , Captopril/pharmacology , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Renin-Angiotensin System/physiology , Tidal Volume , Ventilator-Induced Lung Injury/prevention & control
6.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681724

ABSTRACT

Post-ischemic left ventricular (LV) remodeling and its hypothetical prevention by repeated remote ischemic conditioning (rRIC) in male Sprague-Dawley rats were studied. Myocardial infarction (MI) was evoked by permanent ligation of the left anterior descending coronary artery (LAD), and myocardial characteristics were tested in the infarcted anterior and non-infarcted inferior LV regions four and/or six weeks later. rRIC was induced by three cycles of five-minute-long unilateral hind limb ischemia and five minutes of reperfusion on a daily basis for a period of two weeks starting four weeks after LAD occlusion. Sham operated animals served as controls. Echocardiographic examinations and invasive hemodynamic measurements revealed distinct changes in LV systolic function between four and six weeks after MI induction in the absence of rRIC (i.e., LV ejection fraction (LVEF) decreased from 52.8 ± 2.1% to 50 ± 1.6%, mean ± SEM, p < 0.05) and in the presence of rRIC (i.e., LVEF increased from 48.2 ± 4.8% to 55.2 ± 4.1%, p < 0.05). Angiotensin-converting enzyme (ACE) activity was about five times higher in the anterior LV wall at six weeks than that in sham animals. Angiotensin-converting enzyme 2 (ACE2) activity roughly doubled in post-ischemic LVs. These increases in ACE and ACE2 activities were effectively mitigated by rRIC. Ca2+-sensitivities of force production (pCa50) of LV permeabilized cardiomyocytes were increased at six weeks after MI induction together with hypophosphorylation of 1) cardiac troponin I (cTnI) in both LV regions, and 2) cardiac myosin-binding protein C (cMyBP-C) in the anterior wall. rRIC normalized pCa50, cTnI and cMyBP-C phosphorylations. Taken together, post-ischemic LV remodeling involves region-specific alterations in ACE and ACE2 activities together with changes in cardiomyocyte myofilament protein phosphorylation and function. rRIC has the potential to prevent these alterations and to improve LV performance following MI.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Carboxypeptidases/metabolism , Ischemic Postconditioning , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Animals , Carrier Proteins/metabolism , Disease Models, Animal , Heart Ventricles/metabolism , Male , Myocardial Infarction/metabolism , Myocytes, Cardiac/cytology , Phosphorylation , Rats , Rats, Sprague-Dawley , Troponin I/metabolism , Ventricular Function, Left/physiology , Ventricular Remodeling
7.
Dis Model Mech ; 14(2)2021 02 22.
Article in English | MEDLINE | ID: mdl-33619211

ABSTRACT

Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD.Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal.These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD.


Subject(s)
Cardiomyopathies/pathology , Cardiovascular System , Disease Models, Animal , Dystrophin/genetics , Muscular Dystrophy, Duchenne/genetics , Myocardium/pathology , Myocytes, Cardiac/pathology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cardiomyopathy, Dilated/complications , Dystrophin/metabolism , Endothelium, Vascular/pathology , Fibrosis/pathology , Heart Ventricles/physiopathology , Hemodynamics , Homeostasis , Humans , Inflammation , Kidney/metabolism , Lung/metabolism , Muscle, Skeletal/pathology , Myocytes, Cardiac/metabolism , Oxidative Stress , Peptidyl-Dipeptidase A , Phenotype , Rats , Stress, Mechanical
8.
Basic Res Cardiol ; 115(6): 76, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33258993

ABSTRACT

Ischemic mitral regurgitation (MR) is a frequent complication of myocardial infarction (MI) characterized by adverse remodeling both at the myocardial and valvular levels. Persistent activation of valvular endothelial cells leads to leaflet fibrosis through endothelial-to-mesenchymal transition (EMT). Tenascin C (TNC), an extracellular matrix glycoprotein involved in cardiovascular remodeling and fibrosis, was also identified in inducing epithelial-to-mesenchymal transition. In this study, we hypothesized that TNC also plays a role in the valvular remodeling observed in ischemic MR by contributing to valvular excess EMT. Moderate ischemic MR was induced by creating a posterior papillary muscle infarct (7 pigs and 7 sheep). Additional animals (7 pigs and 4 sheep) served as controls. Pigs and sheep were sacrificed after 6 weeks and 6 months, respectively. TNC expression was upregulated in the pig and sheep experiments at 6 weeks and 6 months, respectively, and correlated well with leaflet thickness (R = 0.68; p < 0.001 at 6 weeks, R = 0.84; p < 0.001 at 6 months). To confirm the translational potential of our findings, we obtained mitral valves from patients with ischemic cardiomyopathy presenting MR (n = 5). Indeed, TNC was also expressed in the mitral leaflets of these. Furthermore, TNC induced EMT in isolated porcine mitral valve endothelial cells (MVEC). Interestingly, Toll-like receptor 4 (TLR4) inhibition prevented TNC-mediated EMT in MVEC. We identified here for the first time a new contributor to valvular remodeling in ischemic MR, namely TNC, which induced EMT through TLR4. Our findings might set the path for novel therapeutic targets for preventing or limiting ischemic MR.


Subject(s)
Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Mitral Valve Insufficiency/metabolism , Mitral Valve/metabolism , Myocardial Infarction/complications , Tenascin/metabolism , Aged , Aged, 80 and over , Animals , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Male , Middle Aged , Mitral Valve/pathology , Mitral Valve/physiopathology , Mitral Valve Insufficiency/etiology , Mitral Valve Insufficiency/pathology , Mitral Valve Insufficiency/physiopathology , Sheep, Domestic , Signal Transduction , Sus scrofa , Toll-Like Receptor 4/metabolism , Up-Regulation
9.
Cancers (Basel) ; 12(2)2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32028699

ABSTRACT

Macrophages form a major component of the leukocyte infiltrate in solid tumors and it has become increasingly clear that tumor-associated macrophages (TAMs) have tumor-promoting effects within the stroma [1]. Renal cell carcinoma (RCC) solid tumors are comprised of a heterogeneous microenvironment of both malignant and normal stromal cells containing large numbers of macrophages [2].We read with interest the paper by Suguru Kadomoto et al. entitled "Tumor-associated macrophages induce migration of renal cell carcinoma cells via activation of the CCL20-CCR6 axis", published in Cancers [3], in which they report that the CCL20-CCR6 axis induces migration and epithelial-mesenchymal transition (EMT) of ACHN and Caki-1 RCC cells in co-cultures with THP-1/U937-derived tumor conditioned macrophages.[...].

10.
Methods Mol Biol ; 2115: 289-325, 2020.
Article in English | MEDLINE | ID: mdl-32006408

ABSTRACT

Tumor-associated macrophages (TAMs) are representing a major leukocyte population in solid tumors. Macrophages are very heterogeneous and plastic cells and can acquire distinct functional phenotypes ranging from antitumorigenic to immunosuppressive tumor-promoting M2-like TAMs, depending on the local tissue microenvironment (TME). TAMs express cytokines, chemokines, growth factors, and extracellular matrix (ECM) modifying factors, and the cross talk with the TME regulates pathways involved in the recruitment, polarization, and metabolism of TAMs during tumor progression. Due to their crucial role in tumor growth and metastasis, selective targeting of TAM for the treatment of cancer with therapeutic agents that promote phagocytosis or suppress survival, proliferation, trafficking, or polarization of TAMs may prove to be beneficial in cancer therapy. In this chapter, we will discuss TAM biology and current strategies for the targeting of TAMs using small interfering RNA (siRNA)-based drugs. In the past few years, advances in the field of nanomedicine pave the way for the development of siRNA-based drugs as an additional class of personalized cancer immuno-nanomedicines. Fundamental challenges associated with this group of therapeutics include the development process, delivery system, and clinical translation for siRNA-based drugs.


Subject(s)
Immunotherapy/methods , Neoplasms/therapy , RNA Interference , RNA, Small Interfering/therapeutic use , RNAi Therapeutics/methods , Tumor-Associated Macrophages/metabolism , Animals , Humans , Nanomedicine/methods , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , RNA, Small Interfering/administration & dosage , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/pathology
11.
J Hypertens ; 37(9): 1861-1870, 2019 09.
Article in English | MEDLINE | ID: mdl-30950975

ABSTRACT

BACKGROUND: Tenascin C (TN-C) is considered to play a pathophysiological role in maladaptive left ventricular remodeling. Yet, the mechanism underlying TN-C-dependent cardiac dysfunction remains elusive. METHOD: The present study was designed to investigate the effect of hypoxia and hypertrophic stimuli on TN-C expression in H9c2 cells and its putative regulation by epigenetic mechanisms, namely DNA promoter methylation and microRNAs. In addition, rats subjected to myocardial infarction (MI) were investigated. H9c2 cells were subjected to oxygen and glucose deprivation; incubated with angiotensin II (Ang II); or human TN-C (hTN-C) purified protein. Hypertrophic and fibrotic markers, TN-C promoter methylation as well as mir-335 expression were assessed by reverse transcription and quantitative polymerase chain reaction while TN-C protein levels were assessed by ELISA. RESULTS: Tn-C mRNA expression was markedly increased by both oxygen and glucose deprivation and Ang II (P < 0.01, respectively). In addition, Ang-II-dependent TN-C upregulation was explained by reduced promoter methylation (P < 0.05). Cells treated with hTN-C displayed upregulation of Bnp, Mmp2, ß-Mhc, integrin α6 and integrin ß1. Furthermore, hTN-C treated cells showed a significant reduction in adenosine monophosphate and adenosine triphosphate levels. In vivo, plasma and myocardial TN-C levels were increased 7 days post MI (P < 0.05, respectively). This increment in TN-C was accompanied by upregulation of mir-335 (P < 0.01). In conclusion, both hypoxic and hypertrophic stimuli lead to epigenetically driven TN-C upregulation and subsequent impairment of cellular energy metabolism in cardiomyoblasts. CONCLUSION: These findings might enlighten our understanding on maladaptive left ventricular remodeling and direct towards a strong involvement of TN-C.


Subject(s)
Cardiomegaly/metabolism , DNA Methylation , Hypoxia/metabolism , Myocardial Infarction/metabolism , Tenascin/metabolism , Angiotensin II , Animals , Coronary Artery Disease , Energy Metabolism , Epigenesis, Genetic , Extracellular Matrix/metabolism , Extracellular Matrix Proteins , Fibrosis , Heart Diseases/metabolism , Humans , Hypertrophy , Male , Matrix Metalloproteinase 2/metabolism , MicroRNAs/metabolism , Myocardium/metabolism , Nerve Tissue Proteins , Rats , Tenascin/genetics , Ventricular Remodeling
12.
Crit Care ; 23(1): 102, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30917851

ABSTRACT

BACKGROUND: Mechanical ventilation can lead to ventilator-induced lung injury (VILI). In addition to the well-known mechanical forces of volutrauma, barotrauma, and atelectrauma, non-mechanical mechanisms have recently been discussed as contributing to the pathogenesis of VILI. One such mechanism is oscillations in partial pressure of oxygen (PO2) which originate in lung tissue in the presence of within-breath recruitment and derecruitment of alveoli. The purpose of this study was to investigate this mechanism's possible independent effects on lung tissue and inflammation in a porcine model. METHODS: To separately study the impact of PO2 oscillations on the lungs, an in vivo model was set up that allowed for generating mixed-venous PO2 oscillations by the use of veno-venous extracorporeal membrane oxygenation (vvECMO) in a state of minimal mechanical stress. While applying the identical minimal-invasive ventilator settings, 16 healthy female piglets (weight 50 ± 4 kg) were either exposed for 6 h to a constant mixed-venous hemoglobin saturation (SmvO2) of 65% (which equals a PmvO2 of 41 Torr) (control group), or an oscillating SmvO2 (intervention group) of 40-90% (which equals PmvO2 oscillations of 30-68 Torr)-while systemic normoxia in both groups was maintained. The primary endpoint of histologic lung damage was assessed by ex vivo histologic lung injury scoring (LIS), the secondary endpoint of pulmonary inflammation by qRT-PCR of lung tissue. Cytokine concentration of plasma was carried out by ELISA. A bioinformatic microarray analysis of lung samples was performed to generate hypotheses about underlying pathomechanisms. RESULTS: The LIS showed significantly more severe damage of lung tissue after exposure to PO2 oscillations compared to controls (0.53 [0.51; 0.58] vs. 0.27 [0.23; 0.28]; P = 0.0025). Likewise, a higher expression of TNF-α (P = 0.0127), IL-1ß (P = 0.0013), IL-6 (P = 0.0007), and iNOS (P = 0.0013) in lung tissue was determined after exposure to PO2 oscillations. Cytokines in plasma showed a similar trend between the groups, however, without significant differences. Results of the microarray analysis suggest that inflammatory (IL-6) and oxidative stress (NO/ROS) signaling pathways are involved in the pathology linked to PO2 oscillations. CONCLUSIONS: Artificial mixed-venous PO2 oscillations induced lung damage and pulmonary inflammation in healthy animals during lung protective ventilation. These findings suggest that PO2 oscillations represent an independent mechanism of VILI.


Subject(s)
Pneumonia/etiology , Ventilator-Induced Lung Injury/physiopathology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay/methods , Female , Germany , Oxygen/administration & dosage , Oxygen/adverse effects , Oxygen/therapeutic use , Partial Pressure , Pneumonia/pathology , Pneumonia/physiopathology , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiration, Artificial/standards , Respiratory Mechanics/physiology , Swine , Ventilator-Induced Lung Injury/etiology , Ventilator-Induced Lung Injury/pathology
13.
Int J Cardiol ; 285: 72-79, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30904281

ABSTRACT

AIMS: Remote ischemic conditioning (RIC) is considered a potential clinical approach to reduce myocardial infarct size and ameliorate adverse post-infarct left ventricular (LV) remodeling, however the mechanisms are unknown. The aim was to clarify the impact of RIC on Neuregulin-1 (NRG-1)/ErbBs expression, inflammation and LV hemodynamic function. METHODS AND RESULTS: Male Sprague-Dawley rats were subjected to 30 min occlusion of the left coronary artery (LCA) followed by 2 weeks of reperfusion and separated into three groups: (1) sham operated (without LCA occlusion); (2) Myocardial ischemia/reperfusion (MIR) and (3) remote ischemic perconditioning group (MIR + RIPerc). Cardiac structural and functional changes were evaluated by echocardiography and on the isolated working heart system. The level of H3K4me3 at the NRG-1 promoter, and both plasma and LV tissue levels of NRG-1 were assessed. The expression of pro-inflammatory cytokines, ECM components and ErbB receptors were assessed by RT-qPCR. MIR resulted in a significant decrease in LV function and enlargement of LV chamber. This was accompanied with a decrease in the level of H3K4me3 at the NRG-1 promoter. Consequently NRG-1 protein levels were reduced in the infarcted myocardium. Subsequently, an upregulated influx of CD68+ macrophages, high expression of MMP-2 and -9 as well as an increase of IL-1ß, TLR-4, TNF-α, TNC expression were observed. In contrast, RIPerc significantly decreased inflammation and improved LV function in association with the enhancement of NRG-1 levels and ErbB3 expression. CONCLUSIONS: These findings may reveal a novel anti-remodeling and anti-inflammatory effect of RIPerc, involving activation of NRG-1/ErbB3 signaling.


Subject(s)
Heart Ventricles/physiopathology , Ischemic Preconditioning, Myocardial/methods , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/complications , Ventricular Function, Left/physiology , Ventricular Remodeling/physiology , Animals , Disease Models, Animal , Echocardiography , Heart Ventricles/diagnostic imaging , Male , Myocardial Infarction/etiology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Sprague-Dawley
14.
Exp Gerontol ; 119: 193-202, 2019 05.
Article in English | MEDLINE | ID: mdl-30763602

ABSTRACT

The aim of this study was to describe the potential associations of the expression of matricellular components in adverse post-infarction remodeling of the geriatric heart. In male geriatric (OM, age: 18 months) and young (YM, age: 11 weeks) OF1 mice myocardial infarction (MI) was induced by permanent ligation of the left anterior descending coronary artery. Cardiac function was evaluated by MRI. Plasma and myocardial tissue samples were collected 3d, 7d, and 32d post-MI. Age and MI were associated with impaired cardiac function accompanied by left-ventricular (LV) dilatation. mRNA expression of MMP-2 (7d: p < 0.05), TIMP-1 (7d: p < 0.05), TIMP-2 (7d: p < 0.05), Collagen-1 (3d and 7d: p < 0.05) and Collagen-3 (7d: p < 0.05) in LV non-infarcted myocardium was significantly higher in YM than in OM after MI. MMP-9 activity in plasma was increased in OM after MI (3d: p < 0.01). Tenascin-C protein levels assessed by ELISA were decreased in OM as compared to YM after MI in plasma (3d: p < 0.001, 7d: p < 0.05) and LV non-infarcted myocardium (7d: p < 0.01). Dysregulation in ECM components in non-infarcted LV might be associated and contribute to adverse LV remodeling and impaired cardiac function. Thus, targeting ECM might be a potential therapeutic approach to enhance cardiac function in geriatric patients following MI.


Subject(s)
Aging/physiology , Myocardial Infarction/physiopathology , Ventricular Remodeling/physiology , Aging/genetics , Aging/pathology , Animals , Disease Models, Animal , Extracellular Matrix/metabolism , Magnetic Resonance Imaging , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/blood , Mice , Myocardial Infarction/genetics , Myocardial Infarction/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tenascin/blood , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-2/genetics , Ventricular Remodeling/genetics
15.
Oncotarget ; 9(33): 23126-23148, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29796177

ABSTRACT

Interleukin-34 (IL-34) is a ligand for the CSF-1R and has also two additional receptors, PTPRZ1 and syndecan-1. IL-34 plays a role in innate immunity, inflammation, and cancer. However, the role of IL-34 in breast cancer is still ill-defined. We analyzed IL-34 mRNA expression in breast cancer cell lines and breast cancer patients and applied established computational approaches (CIBERSORT, ESTIMATE, TIMER, TCIA), to analyze gene expression data from The Cancer Genome Atlas (TCGA). Expression of IL-34 was associated with a favorable prognosis in luminal and HER2 but not basal breast cancer patients. Gene expression of CSF-1 and CSF-1R was strongly associated with myeloid cell infiltration, while we found no or only weak correlations between IL-34, PTPRZ1, syndecan-1 and myeloid cells. In vitro experiments showed that tyrosine phosphorylation of CSF-1R, ERK, and FAK and cell migration are differentially regulated by IL-34 and CSF-1 in breast cancer cell lines. Collectively, our data suggest that correlation of IL-34 gene expression with survival is dependent on the molecular breast cancer subtype. Furthermore, IL-34 is not associated with myeloid cell infiltration and directly regulates breast cancer cell migration and signaling.

16.
J Hypertens ; 36(4): 847-856, 2018 04.
Article in English | MEDLINE | ID: mdl-29283973

ABSTRACT

AIMS: Left ventricular (LV) hypertrophy is characterized by cardiomyocyte hypertrophy and interstitial fibrosis ultimately leading to increased myocardial stiffness and reduced contractility. There is substantial evidence that the altered expression of matrix metalloproteinases (MMP) and Tenascin-C (TN-C) are associated with the progression of adverse LV remodeling. However, the role of TN-C in the development of LV hypertrophy because of chronic pressure overload as well as the regulatory role of TN-C on MMPs remains unknown. METHODS AND RESULTS: In a knockout mouse model of TN-C, we investigated the effect of 10 weeks of pressure overload using transverse aortic constriction (TAC). Cardiac function was determined by magnetic resonance imaging. The expression of MMP-2 and MMP-9, CD147 as well as myocardial fibrosis were assessed by immunohistochemistry. The expression of TN-C was assessed by RT-qPCR and ELISA. TN-C knockout mice showed marked reduction in fibrosis (P < 0.001) and individual cardiomyocytes size (P < 0.01), in expression of MMP-2 (P < 0.05) and MMP-9 (P < 0.001) as well as preserved cardiac function (P < 0.01) in comparison with wild-type mice after 10 weeks of TAC. In addition, CD147 expression was markedly increased under pressure overload (P < 0.01), irrespectively of genotype. TN-C significantly increased the expression of the markers of hypertrophy such as ANP and BNP as well as MMP-2 in H9c2 cells (P < 0.05, respectively). CONCLUSION: Our results are pointed toward a novel signaling mechanism that contributes to LV remodeling via MMPs upregulation, cardiomyocyte hypertrophy as well as myocardial fibrosis by TN-C under chronic pressure overload.


Subject(s)
Hypertension/complications , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Myocardium/pathology , Tenascin/genetics , Tenascin/metabolism , Ventricular Remodeling/genetics , Animals , Basigin/genetics , Basigin/metabolism , Cardiac Output , Cell Line , Fibrosis , Genotype , Hypertrophy, Left Ventricular/physiopathology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology , Natriuretic Peptide, Brain/metabolism , Signal Transduction , Ventricular Remodeling/physiology
17.
Int J Mol Sci ; 17(10)2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27669225

ABSTRACT

Neuroblastoma (NB) is the most common extracranial solid tumor of childhood and is a rapidly growing, highly-vascularized cancer. NBs frequently express angiogenic factors and high tumor angiogenesis has been associated with poor outcomes. Placental growth factor (PlGF) is an angiogenic protein belonging to the vascular endothelial growth factor (VEGF) family and is up-regulated mainly in pathologic conditions. Recently, PlGF was identified as a member of a gene expression signature characterizing highly malignant NB stem cells drawing attention as a potential therapeutic target in NB. In the present study, we sought to investigate the expression of PlGF in NB patients and the effect of PlGF inhibition on high-risk MYCN-non-amplified SK-N-AS NB xenografts. Human SK-N-AS cells, which are poorly differentiated and express PlGF and VEGF-A, were implanted subcutaneously in athymic nude mice. Treatment was done by intratumoral injection of replication-incompetent adenoviruses (Ad) expressing PlGF- or VEGF-specific short hairpin (sh)RNA, or soluble (s)VEGF receptor 2 (VEGFR2). The effect on tumor growth and angiogenesis was analyzed. High PlGF expression levels were observed in human advanced-stage NBs. Down-regulating PlGF significantly reduced NB growth in established NB xenografts by reducing cancer cell proliferation but did not suppress angiogenesis. In contrast, blocking VEGF by administration of Ad(sh)VEGF and Ad(s)VEGFR2 reduced tumor growth associated with decreased tumor vasculature. These findings suggest that PlGF and VEGF-A modulate MYCN-non-amplified NB tumors by different mechanisms and support a role for PlGF in NB biology.


Subject(s)
N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Placenta Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Adenoviridae/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Child, Preschool , Female , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Infant , Male , Mice , Mice, Nude , Neovascularization, Pathologic , Neuroblastoma/metabolism , Neuroblastoma/prevention & control , Placenta Growth Factor/antagonists & inhibitors , Placenta Growth Factor/genetics , RNA Interference , RNA, Small Interfering/metabolism , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
18.
Oncotarget ; 7(29): 46187-46202, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27323822

ABSTRACT

Frizzled2 (FZD2) is a receptor for Wnts and may activate both canonical and non-canonical Wnt signaling pathways in cancer. However, no studies have reported an association between FZD2 signaling and high-risk NB so far. Here we report that FZD2 signaling pathways are critical to NB growth in MYCN-single copy SK-N-AS and MYCN-amplified SK-N-DZ high-risk NB cells. We demonstrate that stimulation of FZD2 by Wnt3a and Wnt5a regulates ß-catenin-dependent and -independent Wnt signaling factors. FZD2 blockade suppressed ß-catenin-dependent signaling activity and increased phosphorylation of PKC, AKT and ERK in vitro, consistent with upregulation of ß-catenin-independent signaling activity. Finally, FZD2 small interfering RNA knockdown suppressed tumor growth in murine NB xenograft models associated with suppressed ß-catenin-dependent signaling and a less vascularized phenotype in both NB xenografts. Together, our study suggests a role for FZD2 in high-risk NB cell growth and provides a potential candidate for therapeutic inhibition in FZD2-expressing NB patients.


Subject(s)
Frizzled Receptors/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Wnt Signaling Pathway/physiology , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Heterografts , Humans , Mice , Mice, Nude
19.
Int J Mol Sci ; 16(12): 29643-53, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26690424

ABSTRACT

Like other RECQ helicases, WRN/RECQL2 plays a crucial role in DNA replication and the maintenance of genome stability. Inactivating mutations in RECQL2 lead to Werner syndrome, a rare autosomal disease associated with premature aging and an increased susceptibility to multiple cancer types. We analyzed the association of two coding single-nucleotide polymorphisms in WRN, Cys1367Arg (rs1346044), and Arg834Cys (rs3087425), with the risk, age at onset, and clinical subclasses of breast cancer in a hospital-based case-control study of an Austrian population of 272 breast cancer patients and 254 controls. Here we report that the rare homozygous CC genotype of rs1346044 was associated with an approximately two-fold elevated breast cancer risk. Moreover, patients with the CC genotype exhibited a significantly increased risk of developing breast cancer under the age of 55 in both recessive and log-additive genetic models. CC patients developed breast cancer at a mean age of 55.2 ± 13.3 years and TT patients at 60.2 ± 14.7 years. Consistently, the risk of breast cancer was increased in pre-menopausal patients in the recessive model. These findings suggest that the CC genotype of WRN rs1346044 may contribute to an increased risk and a premature onset of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Exodeoxyribonucleases/genetics , RecQ Helicases/genetics , Age of Onset , Case-Control Studies , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk , Werner Syndrome/genetics , Werner Syndrome Helicase
20.
Methods Mol Biol ; 1218: 143-61, 2015.
Article in English | MEDLINE | ID: mdl-25319650

ABSTRACT

The tumor microenvironment is composed of accessory cells and immune cells in addition to extracellular matrix (ECM) components. The stromal compartment interacts with cancer cells in a complex crosstalk to support tumor development. Growth factors and cytokines produced by stromal cells support the growth of tumor cells and promote interaction with the vasculature to enhance tumor progression and invasion. The activation of autocrine and paracrine oncogenic signaling pathways by growth factors, cytokines, and proteases derived from both tumor cells and the stromal compartment is thought to play a major role in assisting tumor cells during metastasis. Consequently, targeting tumor-stroma interactions by RNA interference (RNAi)-based approaches is a promising strategy in the search for novel treatment modalities in human cancer. Recent advances in packaging technology including the use of polymers, peptides, liposomes, and nanoparticles to deliver small interfering RNAs (siRNAs) into target cells may overcome limitations associated with potential RNAi-based therapeutics. Newly developed nonviral gene delivery approaches have shown improved anticancer efficacy suggesting that RNAi-based therapeutics provide novel opportunities to elicit significant gene silencing and induce regression of tumor growth. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with RNAi-based cancer therapeutics.


Subject(s)
Macrophage Colony-Stimulating Factor/genetics , Mammary Neoplasms, Animal/therapy , RNA Interference , RNA, Small Interfering/genetics , Receptor, Macrophage Colony-Stimulating Factor/genetics , Stromal Cells/metabolism , Tumor Microenvironment , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , MCF-7 Cells , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/metabolism , Macrophages/pathology , Mammary Neoplasms, Animal/blood supply , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Neovascularization, Pathologic , RNA, Small Interfering/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Stromal Cells/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...