Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 251(4): 577-608, 2022 04.
Article in English | MEDLINE | ID: mdl-34582081

ABSTRACT

Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.


Subject(s)
Ciliopathies , Polydactyly , Animals , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Homeostasis , Mammals , Polydactyly/genetics , Proteins/genetics
2.
Cells ; 10(6)2021 06 09.
Article in English | MEDLINE | ID: mdl-34207779

ABSTRACT

A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.


Subject(s)
Cell Transformation, Neoplastic/pathology , Centrosome/metabolism , Cilia , Neoplasms , Receptors, Fibroblast Growth Factor/metabolism , Animals , Cilia/metabolism , Cilia/pathology , Humans , Neoplasms/metabolism , Neoplasms/pathology , Oncogene Fusion
3.
Sci Transl Med ; 13(592)2021 05 05.
Article in English | MEDLINE | ID: mdl-33952673

ABSTRACT

Achondroplasia is the most prevalent genetic form of dwarfism in humans and is caused by activating mutations in FGFR3 tyrosine kinase. The clinical need for a safe and effective inhibitor of FGFR3 is unmet, leaving achondroplasia currently incurable. Here, we evaluated RBM-007, an RNA aptamer previously developed to neutralize the FGFR3 ligand FGF2, for its activity against FGFR3. In cultured rat chondrocytes or mouse embryonal tibia organ culture, RBM-007 rescued the proliferation arrest, degradation of cartilaginous extracellular matrix, premature senescence, and impaired hypertrophic differentiation induced by FGFR3 signaling. In cartilage xenografts derived from induced pluripotent stem cells from individuals with achondroplasia, RBM-007 rescued impaired chondrocyte differentiation and maturation. When delivered by subcutaneous injection, RBM-007 restored defective skeletal growth in a mouse model of achondroplasia. We thus demonstrate a ligand-trap concept of targeting the cartilage FGFR3 and delineate a potential therapeutic approach for achondroplasia and other FGFR3-related skeletal dysplasias.


Subject(s)
Achondroplasia , Aptamers, Nucleotide , Achondroplasia/drug therapy , Achondroplasia/genetics , Animals , Bone Development , Cell Differentiation , Chondrocytes , Mice , Rats , Receptor, Fibroblast Growth Factor, Type 3/genetics
4.
EMBO Mol Med ; 12(11): e11739, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33200460

ABSTRACT

Mutations in genes affecting primary cilia cause ciliopathies, a diverse group of disorders often affecting skeletal development. This includes Jeune syndrome or asphyxiating thoracic dystrophy (ATD), an autosomal recessive skeletal disorder. Unraveling the responsible molecular pathology helps illuminate mechanisms responsible for functional primary cilia. We identified two families with ATD caused by loss-of-function mutations in the gene encoding adrenergic receptor kinase 1 (ADRBK1 or GRK2). GRK2 cells from an affected individual homozygous for the p.R158* mutation resulted in loss of GRK2, and disrupted chondrocyte growth and differentiation in the cartilage growth plate. GRK2 null cells displayed normal cilia morphology, yet loss of GRK2 compromised cilia-based signaling of Hedgehog (Hh) pathway. Canonical Wnt signaling was also impaired, manifested as a failure to respond to Wnt ligand due to impaired phosphorylation of the Wnt co-receptor LRP6. We have identified GRK2 as an essential regulator of skeletogenesis and demonstrate how both Hh and Wnt signaling mechanistically contribute to skeletal ciliopathies.


Subject(s)
Ellis-Van Creveld Syndrome , G-Protein-Coupled Receptor Kinase 2/genetics , Hedgehog Proteins , Hedgehog Proteins/genetics , Humans , Mutation , Wnt Signaling Pathway
5.
Cell Mol Life Sci ; 77(19): 3885-3903, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31820037

ABSTRACT

Many patients with chronic myeloid leukemia in deep remission experience return of clinical disease after withdrawal of tyrosine kinase inhibitors (TKIs). This suggests signaling of inactive BCR-ABL, which allows the survival of cancer cells, and relapse. We show that TKI treatment inhibits catalytic activity of BCR-ABL, but does not dissolve BCR-ABL core signaling complex, consisting of CRKL, SHC1, GRB2, SOS1, cCBL, p85a-PI3K, STS1 and SHIP2. Peptide microarray and co-immunoprecipitation results demonstrate that CRKL binds to proline-rich regions located in C-terminal, intrinsically disordered region of BCR-ABL, that SHC1 requires pleckstrin homology, src homology and tyrosine kinase domains of BCR-ABL for binding, and that BCR-ABL sequence motif located in disordered region around phosphorylated tyrosine 177 mediates binding of three core complex members, i.e., GRB2, SOS1, and cCBL. Further, SHIP2 binds to the src homology and tyrosine kinase domains of BCR-ABL and its inositol phosphatase activity contributes to BCR-ABL-mediated phosphorylation of SHC1. Together, this study characterizes protein-protein interactions within the BCR-ABL core complex and determines the contribution of particular BCR-ABL domains to downstream signaling. Understanding the structure and dynamics of BCR-ABL interactome is critical for the development of drugs targeting integrity of the BCR-ABL core complex.


Subject(s)
Fusion Proteins, bcr-abl/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Binding Sites , Cell Line, Tumor , Fusion Proteins, bcr-abl/chemistry , Fusion Proteins, bcr-abl/genetics , HEK293 Cells , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Phosphorylation , Protein Array Analysis , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , src Homology Domains
6.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782830

ABSTRACT

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Subject(s)
Cilia/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , CRISPR-Cas Systems , Fibroblast Growth Factors/metabolism , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , Mice, Knockout , Models, Animal , Molecular Docking Simulation , NIH 3T3 Cells , Phosphorylation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Proteomics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Receptors, Fibroblast Growth Factor/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...