Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Neurosurg ; : 1-11, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457795

ABSTRACT

OBJECTIVE: Meningiomas are the most common primary brain tumors in adults and a subset are aggressive lesions resistant to standard therapies. Laser interstitial thermal therapy (LITT) has been successfully applied to other brain tumors, and recent work aims to explore the safety and long-term outcome experiences of LITT for both new and recurrent meningiomas. The authors' objective was to report safety and outcomes data of the largest cohort of LITT-treated meningioma patients to date. METHODS: Eight United States-based hospitals enrolled patients with meningioma in the Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroBlate System (LAANTERN) prospective multicenter registry and/or contributed additional retrospective enrollments for this cohort study. Demographic, procedural, safety, and outcomes data were collected and analyzed using standard statistical methods. RESULTS: Twenty adult patients (12 prospective and 8 retrospective) with LITT-targeted meningiomas were accrued. Patients underwent LITT for new (6 patients) and recurrent (14 patients) tumors (ranging from the 1st to 12th recurrence). The 30-day complication rate was 10%. Twenty percent of patients (4/20) had exhausted all other treatment options. Median length of follow-up was 1.3 years. One-third of new (2/6) and one-half of recurrent (7/14) meningiomas had disease progression during follow-up. One-year estimated local control (LC), progression-free survival, and overall survival rates were 55.3%, 48.4%, and 86.3%, respectively. In the 12 patients who had ≥ 91% ablative coverage, 1-year estimated LC was 61.4%. The complication rate was 10% (2/20), with 1 complication being transient and resolving postoperatively. CONCLUSIONS: This cohort study supports the safety of the procedure for this tumor type. LITT can offer a much-needed treatment option, especially for patients with multiply recurrent meningiomas who have limited remaining alternatives.

2.
Neurooncol Adv ; 5(1): vdad031, 2023.
Article in English | MEDLINE | ID: mdl-37114245

ABSTRACT

Background: Laser interstitial thermal therapy (LITT) in the setting of post-SRS radiation necrosis (RN) for patients with brain metastases has growing evidence for efficacy. However, questions remain regarding hospitalization, local control, symptom control, and concurrent use of therapies. Methods: Demographics, intraprocedural data, safety, Karnofsky performance status (KPS), and survival data were prospectively collected and then analyzed on patients who consented between 2016-2020 and who were undergoing LITT for biopsy-proven RN at one of 14 US centers. Data were monitored for accuracy. Statistical analysis included individual variable summaries, multivariable Fine and Gray analysis, and Kaplan-Meier estimated survival. Results: Ninety patients met the inclusion criteria. Four patients underwent 2 ablations on the same day. Median hospitalization time was 32.5 hours. The median time to corticosteroid cessation after LITT was 13.0 days (0.0, 1229.0) and cumulative incidence of lesional progression was 19% at 1 year. Median post-procedure overall survival was 2.55 years [1.66, infinity] and 77.1% at one year as estimated by KaplanMeier. Median KPS remained at 80 through 2-year follow-up. Seizure prevalence was 12% within 1-month post-LITT and 7.9% at 3 months; down from 34.4% within 60-day prior to procedure. Conclusions: LITT for RN was not only again found to be safe with low patient morbidity but was also a highly effective treatment for RN for both local control and symptom management (including seizures). In addition to averting expected neurological death, LITT facilitates ongoing systemic therapy (in particular immunotherapy) by enabling the rapid cessation of steroids, thereby facilitating maximal possible survival for these patients.

3.
JAMA Oncol ; 9(1): 112-121, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36394838

ABSTRACT

Importance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed. Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma. Design, Setting, and Participants: This phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021. Interventions: The active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies. Main Outcomes and Measures: The primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials. Results: A total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03). Conclusions and Relevance: In this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone. Trial Registration: ClinicalTrials.gov Identifier: NCT00045968.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Temozolomide/therapeutic use , Prospective Studies , Brain Neoplasms/pathology , Recurrence , Dendritic Cells/pathology , Vaccination
4.
J Neurosurg ; : 1-10, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33035996

ABSTRACT

OBJECTIVE: Intraoperative MRI (iMRI) is used in the surgical treatment of glioblastoma, with uncertain effects on outcomes. The authors evaluated the impact of iMRI on extent of resection (EOR) and overall survival (OS) while controlling for other known and suspected predictors. METHODS: A multicenter retrospective cohort of 640 adult patients with newly diagnosed supratentorial glioblastoma who underwent resection was evaluated. iMRI was performed in 332/640 cases (51.9%). Reviews of MRI features and tumor volumetric analysis were performed on a subsample of cases (n = 286; 110 non-iMRI, 176 iMRI) from a single institution. RESULTS: The median age was 60.0 years (mean 58.5 years, range 20.5-86.3 years). The median OS was 17.0 months (95% CI 15.6-18.4 months). Gross-total resection (GTR) was achieved in 403/640 cases (63.0%). Kaplan-Meier analysis of 286 cases with volumetric analysis for EOR (grouped into 100%, 95%-99%, 80%-94%, and 50%-79%) showed longer OS for 100% EOR compared to all other groups (p < 0.01). Additional resection after iMRI was performed in 104/122 cases (85.2%) with initial subtotal resection (STR), leading to a 6.3% mean increase in EOR and a 2.2-cm3 mean decrease in tumor volume. For iMRI cases with volumetric analysis, the GTR rate increased from 54/176 (30.7%) on iMRI to 126/176 (71.5%) postoperatively. The EOR was significantly higher in the iMRI group for intended GTR and STR groups (p = 0.02 and p < 0.01, respectively). Predictors of GTR on multivariate logistic regression included iMRI use and intended GTR. Predictors of shorter OS on multivariate Cox regression included older age, STR, isocitrate dehydrogenase 1 (IDH1) wild type, no O6-methylguanine DNA methyltransferase (MGMT) methylation, and no Stupp therapy. iMRI was a significant predictor of OS on univariate (HR 0.82, 95% CI 0.69-0.98; p = 0.03) but not multivariate analyses. Use of iMRI was not associated with an increased rate of new permanent neurological deficits. CONCLUSIONS: GTR increased OS for patients with newly diagnosed glioblastoma after adjusting for other prognostic factors. iMRI increased EOR and GTR rate and was a significant predictor of GTR on multivariate analysis; however, iMRI was not an independent predictor of OS. Additional supporting evidence is needed to determine the clinical benefit of iMRI in the management of glioblastoma.

5.
Neurosurgery ; 88(1): E49-E59, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32803226

ABSTRACT

BACKGROUND: Intraoperative magnetic resonance imaging (iMRI) is a powerful tool for guiding brain tumor resections, provided that it accurately discerns residual tumor. OBJECTIVE: To use histopathology to assess how reliably iMRI may discern additional tumor for a variety of tumor types, independent of the indications for iMRI. METHODS: A multicenter database was used to calculate the odds of additional resection during the same surgical session for grade I to IV gliomas and pituitary adenomas. The reliability of iMRI for identifying residual tumor was assessed using histopathology of tissue resected after iMRI. RESULTS: Gliomas (904/1517 cases, 59.6%) were more likely than pituitary adenomas (176/515, 34.2%) to receive additional resection after iMRI (P < .001), but these tumors were equally likely to have additional tissue sent for histopathology (398/904, 44.4% vs 66/176, 37.5%; P = .11). Tissue samples were available for resections after iMRI for 464 cases, with 415 (89.4%) positive for tumor. Additional resections after iMRI for gliomas (361/398, 90.7%) were more likely to yield additional tumor compared to pituitary adenomas (54/66, 81.8%) (P = .03). There were no significant differences in resection after iMRI yielding histopathologically positive tumor between grade I (58/65 cases, 89.2%; referent), grade II (82/92, 89.1%) (P = .98), grade III (72/81, 88.9%) (P = .95), or grade IV gliomas (149/160, 93.1%) (P = .33). Additional resection for previously resected tumors (122/135 cases, 90.4%) was equally likely to yield histopathologically confirmed tumor compared to newly-diagnosed tumors (293/329, 89.0%) (P = .83). CONCLUSION: Histopathological analysis of tissue resected after use of iMRI for grade I to IV gliomas and pituitary adenomas demonstrates that iMRI is highly reliable for identifying residual tumor.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Neoplasm, Residual/diagnostic imaging , Neoplasm, Residual/surgery , Surgery, Computer-Assisted/methods , Adenoma/diagnostic imaging , Adenoma/surgery , Glioma/diagnostic imaging , Glioma/surgery , Humans , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Reproducibility of Results , Stereotaxic Techniques
6.
Neurosurgery ; 88(1): 63-73, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32717067

ABSTRACT

BACKGROUND: Few studies use large, multi-institutional patient cohorts to examine the role of intraoperative magnetic resonance imaging (iMRI) in the resection of grade II gliomas. OBJECTIVE: To assess the impact of iMRI and other factors on overall survival (OS) and progression-free survival (PFS) for newly diagnosed grade II astrocytomas and oligodendrogliomas. METHODS: Retrospective analyses of a multicenter database assessed the impact of patient-, treatment-, and tumor-related factors on OS and PFS. RESULTS: A total of 232 resections (112 astrocytomas and 120 oligodendrogliomas) were analyzed. Oligodendrogliomas had longer OS (P < .001) and PFS (P = .01) than astrocytomas. Multivariate analyses demonstrated improved OS for gross total resection (GTR) vs subtotal resection (STR; P = .006, hazard ratio [HR]: .23) and near total resection (NTR; P = .02, HR: .64). GTR vs STR (P = .02, HR: .54), GTR vs NTR (P = .04, HR: .49), and iMRI use (P = .02, HR: .54) were associated with longer PFS. Frontal (P = .048, HR: 2.11) and occipital/parietal (P = .003, HR: 3.59) locations were associated with shorter PFS (vs temporal). Kaplan-Meier analyses showed longer OS with increasing extent of surgical resection (EOR) (P = .03) and 1p/19q gene deletions (P = .02). PFS improved with increasing EOR (P = .01), GTR vs NTR (P = .02), and resections above STR (P = .04). Factors influencing adjuvant treatment (35.3% of patients) included age (P = .002, odds ratio [OR]: 1.04) and EOR (P = .003, OR: .39) but not glioma subtype or location. Additional tumor resection after iMRI was performed in 105/159 (66%) iMRI cases, yielding GTR in 54.5% of these instances. CONCLUSION: EOR is a major determinant of OS and PFS for patients with grade II astrocytomas and oligodendrogliomas. Intraoperative MRI may improve EOR and was associated with increased PFS.


Subject(s)
Brain Neoplasms/surgery , Glioma/surgery , Magnetic Resonance Imaging/methods , Neurosurgical Procedures/methods , Surgery, Computer-Assisted/methods , Adolescent , Adult , Aged , Brain Neoplasms/mortality , Child , Child, Preschool , Female , Glioma/mortality , Humans , Kaplan-Meier Estimate , Middle Aged , Neuroimaging/methods , Neurosurgical Procedures/mortality , Progression-Free Survival , Retrospective Studies , Surgery, Computer-Assisted/mortality , Young Adult
7.
World Neurosurg ; 135: e754-e764, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31901497

ABSTRACT

OBJECTIVE: To assess the impact of intraoperative magnetic resonance imaging (iMRI), extent of resection (EOR), and other factors on overall survival (OS) and progression-free survival (PFS) for patients with newly diagnosed grade I gliomas. METHODS: A multicenter database was queried to identify patients with grade I gliomas. Retrospective analyses assessed the impact of patient, treatment, and tumor characteristics on OS and PFS. RESULTS: A total of 284 patients underwent treatment for grade I gliomas, including 248 resections (205 with iMRI, 43 without), 23 biopsies, and 13 laser interstitial thermal therapy treatments. Log-rank analyses of Kaplan-Meier plots showed improved 5-year OS (P = 0.0107) and PFS (P = 0.0009) with increasing EOR, and a trend toward improved 5-year OS for patients with lower American Society of Anesthesiologists score (P = 0.0528). Greater EOR was associated with significantly increased 5-year PFS for pilocytic astrocytoma (P < 0.0001), but not for ganglioglioma (P = 0.10) or dysembryoplastic neuroepithelial tumor (P = 0.57). Temporal tumors (P = 0.04) and location of "other" (P = 0.04) were associated with improved PFS, and occipital/parietal tumors (P = 0.02) were associated with decreased PFS compared with all other locations. Additional tumor resection was performed after iMRI in 49.7% of cases using iMRI, which produced gross total resection in 64% of these additional resection cases. CONCLUSIONS: Patients with grade I gliomas have extended OS and PFS, which correlates positively with increasing EOR, especially for patients with pilocytic astrocytoma. iMRI may increase EOR, indicated by the rate of gross total resection after iMRI use but was not independently associated with increased OS or PFS.


Subject(s)
Brain Neoplasms/surgery , Glioma/surgery , Adolescent , Adult , Aged , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Child , Child, Preschool , Female , Glioma/mortality , Glioma/pathology , Humans , Infant , Intraoperative Care , Kaplan-Meier Estimate , Male , Middle Aged , Neurosurgical Procedures/methods , Neurosurgical Procedures/mortality , Risk Factors , Treatment Outcome , Young Adult
8.
J Transl Med ; 16(1): 179, 2018 06 29.
Article in English | MEDLINE | ID: mdl-29958537

ABSTRACT

Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.

9.
J Transl Med ; 16(1): 142, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843811

ABSTRACT

BACKGROUND: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma. METHODS: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS). RESULTS: For the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone. CONCLUSIONS: Addition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival. Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1 ; initially registered 19 September 2002.


Subject(s)
Brain Neoplasms/immunology , Brain Neoplasms/therapy , Cancer Vaccines/immunology , Dendritic Cells/immunology , Glioblastoma/immunology , Glioblastoma/therapy , Adult , Aged , Brain Neoplasms/diagnosis , Cancer Vaccines/adverse effects , Endpoint Determination , Female , Glioblastoma/diagnosis , Humans , Male , Middle Aged , Prognosis , Survival Analysis , Treatment Outcome , Young Adult
11.
Neurosurg Clin N Am ; 19(2): 367-77, vii-viii, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18534345

ABSTRACT

Medical decision-making is based on benefit-to-cost analysis. Optimally, treatment obtains a high degree of benefit while minimizing the physical, social, and financial costs. The goals of the treatment of acoustic schwannomas are prohibiting tumor growth and alleviation of symptoms caused by damage to local structures. These symptoms-tinnitus, ataxia, and hearing loss-secondary to eighth nerve dysfunction, as well as symptoms arising from damage to adjacent structures such as the facial nerve, trigeminal nerve, or pons, can be caused by tumor growth or treatment. Determination of optimal therapy must also take into account an understanding of the natural history of the disease, because acoustic schwannomas are slow-growing benign tumors that when left untreated, usually enlarge over time and cause problems.


Subject(s)
Neuroma, Acoustic/history , Stereotaxic Techniques/history , Dose Fractionation, Radiation , History, 21st Century , Humans , Neuroma, Acoustic/radiotherapy , Neuroma, Acoustic/surgery
12.
Otolaryngol Clin North Am ; 40(3): 571-88, ix, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17544696

ABSTRACT

Medical decision-making is based on benefit-to-cost analysis. Optimally, treatment obtains a high degree of benefit while minimizing the physical, social, and financial costs. The goals of the treatment of acoustic schwannomas are prohibiting tumor growth and alleviation of symptoms caused by damage to local structures. These symptoms-tinnitus, ataxia, and hearing loss--secondary to eighth nerve dysfunction, as well as symptoms arising from damage to adjacent structures such as the facial nerve, trigeminal nerve, or pons, can be caused by tumor growth or treatment. Determination of optimal therapy must also take into account an understanding of the natural history of the disease, because acoustic schwannomas are slow-growing benign tumors that when left untreated, usually enlarge over time and cause problems.


Subject(s)
Ear Neoplasms/pathology , Ear Neoplasms/radiotherapy , Neuroma, Acoustic/pathology , Neuroma, Acoustic/radiotherapy , Radiosurgery/instrumentation , Stereotaxic Techniques , Algorithms , Dose Fractionation, Radiation , Ear Neoplasms/epidemiology , Follow-Up Studies , Humans , Hydrocephalus/epidemiology , Magnetic Resonance Imaging , Neoplasm Invasiveness , Neurofibromatosis 2/epidemiology , Neuroma, Acoustic/epidemiology , Tinnitus/epidemiology , Vertigo/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...