Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Neurology ; 102(10): e209206, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38710006

ABSTRACT

BACKGROUND AND OBJECTIVES: Clinical trials in Duchenne muscular dystrophy (DMD) require 3-6 months of stable glucocorticoids, and the primary outcome is explored at 48-52 weeks. The factors that influence the clinical outcome assessment (COA) trajectories soon after glucocorticoid initiation are relevant for the design and analysis of clinical trials of novel drugs. We describe early COA trajectories, associated factors, and the time from glucocorticoid initiation to COA peak. METHODS: This was a prospective 18-month analysis of the Finding the Optimum Corticosteroid Regimen for Duchenne Muscular Dystrophy study. Four COAs were investigated: rise from supine velocity (RFV), 10-meter walk/run velocity (10MWRV), North Star Ambulatory Assessment (NSAA) total score, and 6-minute walk test distance (6MWT). The relationships of baseline age (4-5 vs 6-7 years), COA baseline performance, genotype, and glucocorticoid regimen (daily vs intermittent) with the COA trajectories were evaluated using linear mixed-effects models. RESULTS: One hundred ninety-six glucocorticoid-naïve boys with DMD aged 4-7 years were enrolled. The mean age at baseline was 5.9 ± 1.0 years, 66% (n = 130) were on daily regimens, 55% (n = 107) showed a 6MWT distance >330 metres; 41% (n = 78) showed RFV >0.2 rise/s; 76% (n = 149) showed 10MWRV >0.142 10m/s, and 41.0% (n = 79) showed NSAA total score >22 points. Mean COA trajectories differed by age at glucocorticoid initiation (p < 0.01 for RFV, 10MWRV, and NSAA; p < 0.05 for 6MWT) and regimen (p < 0.01 for RFV, 10MWRV, and NSAA). Boys younger than 6 years reached their peak performance 12-18 months after glucocorticoid initiation. Boys aged 6 years or older on a daily regimen peaked between months 9 and 12 and those on an intermittent regimen by 9 months. The baseline COA performance was associated with the NSAA (p < 0.01) and the 6MWT trajectory in boys younger than 6 years on a daily regimen (p < 0.01). Differences in the mean trajectories by genotype were not significant. DISCUSSION: Glucocorticoid regimen, age, duration of glucocorticoid exposure, and baseline COA performance need to be considered in the design and analysis of clinical trials in young boys with DMD.


Subject(s)
Glucocorticoids , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Male , Glucocorticoids/administration & dosage , Glucocorticoids/therapeutic use , Child, Preschool , Child , Prospective Studies , Treatment Outcome , Outcome Assessment, Health Care , Age Factors
2.
Pharmacoeconomics ; 42(2): 165-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37891433

ABSTRACT

Internal validity is often the primary concern for health technology assessment agencies when assessing comparative effectiveness evidence. However, the increasing use of real-world data from countries other than a health technology assessment agency's target population in effectiveness research has increased concerns over the external validity, or "transportability", of this evidence, and has led to a preference for local data. Methods have been developed to enable a lack of transportability to be addressed, for example by accounting for cross-country differences in disease characteristics, but their consideration in health technology assessments is limited. This may be because of limited knowledge of the methods and/or uncertainties in how best to utilise them within existing health technology assessment frameworks. This article aims to provide an introduction to transportability, including a summary of its assumptions and the methods available for identifying and adjusting for a lack of transportability, before discussing important considerations relating to their use in health technology assessment settings, including guidance on the identification of effect modifiers, guidance on the choice of target population, estimand, study sample and methods, and how evaluations of transportability can be integrated into health technology assessment submission and decision processes.


Subject(s)
Technology Assessment, Biomedical , Humans , Uncertainty
3.
Stat Med ; 43(1): 184-200, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37932874

ABSTRACT

Multi-state survival models are used to represent the natural history of a disease, forming the basis of a health technology assessment comparing a novel treatment to current practice. Constructing such models for rare diseases is problematic, since evidence sources are typically much sparser and more heterogeneous. This simulation study investigated different one-stage and two-stage approaches to meta-analyzing individual patient data (IPD) in a multi-state survival setting when the number and size of studies being meta-analyzed are small. The objective was to assess methods of different complexity to see when they are accurate, when they are inaccurate and when they struggle to converge due to the sparsity of data. Biologically plausible multi-state IPD were simulated from study- and transition-specific hazard functions. One-stage frailty and two-stage stratified models were estimated, and compared to a base case model that did not account for study heterogeneity. Convergence and the bias/coverage of population-level transition probabilities to, and lengths of stay in, each state were used to assess model performance. A real-world application to Duchenne Muscular Dystrophy, a neuromuscular rare disease, was conducted, and a software demonstration is provided. Models not accounting for study heterogeneity were consistently out-performed by two-stage models. Frailty models struggled to converge, particularly in scenarios of low heterogeneity, and predictions from models that did converge were also subject to bias. Stratified models may be better suited to meta-analyzing disparate sources of IPD in rare disease natural history/economic modeling, as they converge more consistently and produce less biased predictions of lengths of stay.


Subject(s)
Frailty , Models, Statistical , Humans , Rare Diseases/epidemiology , Computer Simulation , Software
4.
PLoS One ; 18(11): e0294666, 2023.
Article in English | MEDLINE | ID: mdl-38019832

ABSTRACT

There is still limited understanding of how chronic conditions co-occur in patients with multimorbidity and what are the consequences for patients and the health care system. Most reported clusters of conditions have not considered the demographic characteristics of these patients during the clustering process. The study used data for all registered patients that were resident in Fife or Tayside, Scotland and aged 25 years or more on 1st January 2000 and who were followed up until 31st December 2018. We used linked demographic information, and secondary care electronic health records from 1st January 2000. Individuals with at least two of the 31 Elixhauser Comorbidity Index conditions were identified as having multimorbidity. Market basket analysis was used to cluster the conditions for the whole population and then repeatedly stratified by age, sex and deprivation. 318,235 individuals were included in the analysis, with 67,728 (21·3%) having multimorbidity. We identified five distinct clusters of conditions in the population with multimorbidity: alcohol misuse, cancer, obesity, renal failure, and heart failure. Clusters of long-term conditions differed by age, sex and socioeconomic deprivation, with some clusters not present for specific strata and others including additional conditions. These findings highlight the importance of considering demographic factors during both clustering analysis and intervention planning for individuals with multiple long-term conditions. By taking these factors into account, the healthcare system may be better equipped to develop tailored interventions that address the needs of complex patients.


Subject(s)
Electronic Health Records , Multimorbidity , Humans , Scotland/epidemiology , Delivery of Health Care , Chronic Disease , Cluster Analysis
5.
J Clin Epidemiol ; 164: 96-103, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37918640

ABSTRACT

OBJECTIVES: We aimed to develop a network meta-analytic model for the evaluation of treatment effectiveness within predictive biomarker subgroups, by combining evidence from individual participant data (IPD) from digital sources (in the absence of randomized controlled trials) and aggregate data (AD). STUDY DESIGN AND SETTING: A Bayesian framework was developed for modeling time-to-event data to evaluate predictive biomarkers. IPD were sourced from electronic health records, using a target trial emulation approach, or digitized Kaplan-Meier curves. The model is illustrated using two examples: breast cancer with a hormone receptor biomarker, and metastatic colorectal cancer with the Kirsten Rat Sarcoma (KRAS) biomarker. RESULTS: The model allowed for the estimation of treatment effects in two subgroups of patients defined by their biomarker status. Effectiveness of taxanes did not differ in hormone receptor positive and negative breast cancer patients. Epidermal growth factor receptor inhibitors were more effective than chemotherapy in KRAS wild type colorectal cancer patients but not in patients with KRAS mutant status. Use of IPD reduced uncertainty of the subgroup-specific treatment effect estimates by up to 49%. CONCLUSION: Utilization of IPD allowed for more detailed evaluation of predictive biomarkers and cancer therapies and improved precision of the estimates compared to use of AD alone.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Bayes Theorem , Network Meta-Analysis , Proto-Oncogene Proteins p21(ras)/therapeutic use , Biomarkers , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
6.
Lancet Public Health ; 8(7): e535-e545, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37393092

ABSTRACT

BACKGROUND: To inform targeted public health strategies, it is crucial to understand how coexisting diseases develop over time and their associated impacts on patient outcomes and health-care resources. This study aimed to examine how psychosis, diabetes, and congestive heart failure, in a cluster of physical-mental health multimorbidity, develop and coexist over time, and to assess the associated effects of different temporal sequences of these diseases on life expectancy in Wales. METHODS: In this retrospective cohort study, we used population-scale, individual-level, anonymised, linked, demographic, administrative, and electronic health record data from the Wales Multimorbidity e-Cohort. We included data on all individuals aged 25 years and older who were living in Wales on Jan 1, 2000 (the start of follow-up), with follow-up continuing until Dec 31, 2019, first break in Welsh residency, or death. Multistate models were applied to these data to model trajectories of disease in multimorbidity and their associated effect on all-cause mortality, accounting for competing risks. Life expectancy was calculated as the restricted mean survival time (bound by the maximum follow-up of 20 years) for each of the transitions from the health states to death. Cox regression models were used to estimate baseline hazards for transitions between health states, adjusted for sex, age, and area-level deprivation (Welsh Index of Multiple Deprivation [WIMD] quintile). FINDINGS: Our analyses included data for 1 675 585 individuals (811 393 [48·4%] men and 864 192 [51·6%] women) with a median age of 51·0 years (IQR 37·0-65·0) at cohort entry. The order of disease acquisition in cases of multimorbidity had an important and complex association with patient life expectancy. Individuals who developed diabetes, psychosis, and congestive heart failure, in that order (DPC), had reduced life expectancy compared with people who developed the same three conditions in a different order: for a 50-year-old man in the third quintile of the WIMD (on which we based our main analyses to allow comparability), DPC was associated with a loss in life expectancy of 13·23 years (SD 0·80) compared with the general otherwise healthy or otherwise diseased population. Congestive heart failure as a single condition was associated with mean a loss in life expectancy of 12·38 years (0·00), and with a loss of 12·95 years (0·06) when preceded by psychosis and 13·45 years (0·13) when followed by psychosis. Findings were robust in people of older ages, more deprived populations, and women, except that the trajectory of psychosis, congestive heart failure, and diabetes was associated with higher mortality in women than men. Within 5 years of an initial diagnosis of diabetes, the risk of developing psychosis or congestive heart failure, or both, was increased. INTERPRETATION: The order in which individuals develop psychosis, diabetes, and congestive heart failure as combinations of conditions can substantially affect life expectancy. Multistate models offer a flexible framework to assess temporal sequences of diseases and allow identification of periods of increased risk of developing subsequent conditions and death. FUNDING: Health Data Research UK.


Subject(s)
Diabetes Mellitus , Heart Failure , Psychotic Disorders , Male , Humans , Female , Adult , Middle Aged , Aged , Semantic Web , Multimorbidity , Retrospective Studies , Wales/epidemiology , Diabetes Mellitus/epidemiology , Heart Failure/epidemiology , Psychotic Disorders/epidemiology , Life Expectancy
7.
Lancet Reg Health Eur ; 32: 100687, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37520147

ABSTRACT

Background: Understanding and quantifying the differences in disease development in different socioeconomic groups of people across the lifespan is important for planning healthcare and preventive services. The study aimed to measure chronic disease accrual, and examine the differences in time to individual morbidities, multimorbidity, and mortality between socioeconomic groups in Wales, UK. Methods: Population-wide electronic linked cohort study, following Welsh residents for up to 20 years (2000-2019). Chronic disease diagnoses were obtained from general practice and hospitalisation records using the CALIBER disease phenotype register. Multi-state models were used to examine trajectories of accrual of 132 diseases and mortality, adjusted for sex, age and area-level deprivation. Restricted mean survival time was calculated to measure time spent free of chronic disease(s) or mortality between socioeconomic groups. Findings: In total, 965,905 individuals aged 5-104 were included, from a possible 2.9 m individuals following a 5-year clearance period, with an average follow-up of 13.2 years (12.7 million person-years). Some 673,189 (69.7%) individuals developed at least one chronic disease or died within the study period. From ages 10 years upwards, the individuals living in the most deprived areas consistently experienced reduced time between health states, demonstrating accelerated transitions to first and subsequent morbidities and death compared to their demographic equivalent living in the least deprived areas. The largest difference were observed in 10 and 20 year old males developing multimorbidity (-0.45 years (99% CI: -0.45, -0.44)) and in 70 year old males dying after developing multimorbidity (-1.98 years (99% CI: -2.01, -1.95)). Interpretation: This study adds to the existing literature on health inequalities by demonstrating that individuals living in more deprived areas consistently experience accelerated time to diagnosis of chronic disease and death across all ages, accounting for competing risks. Funding: UK Medical Research Council, Health Data Research UK, and Administrative Data Research Wales.

8.
Pharmacoecon Open ; 7(5): 777-792, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37306929

ABSTRACT

OBJECTIVES: This paper presents an Australian model that formed part of the health technology assessment for public investment in siltuximab for the rare condition of idiopathic Multicentric Castleman Disease (iMCD) in Australia. METHODS: Two literature reviews were conducted to identify the appropriate comparator and model structure. Survival gain based on available clinical trial data were modelled using an Excel-based model semi-Markov model including time-varying transition probabilities, an adjustment for trial crossover and long-term data. A 20-year horizon was taken, and an Australian healthcare system perspective was adopted, with both benefits and costs discounted at 5%. The model was informed with an inclusive stakeholder approach that included a review of the model by an independent economist, Australian clinical expert opinion and feedback from the Pharmaceutical Benefits Advisory Committee (PBAC). The price used in the economic evaluation reflects a confidential discounted price, which was agreed to with the PBAC. RESULTS: An incremental cost-effectiveness ratio of A$84,935 per quality-adjusted life-year (QALY) gained was estimated. At a willingness-to-pay threshold of A$100,000 per QALY, siltuximab has a 72.1% probability of being cost-effective compared with placebo and best supportive care. Sensitivity analyses results were most sensitive to the length of interval between administrations (from 3- to 6-weekly) and crossover adjustments. CONCLUSION: Within a collaborative and inclusive stakeholder framework, the model submitted to the Australian PBAC found siltuximab to be cost-effective for the treatment of iMCD.

9.
BMC Med Res Methodol ; 23(1): 97, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087450

ABSTRACT

BACKGROUND: With the increased interest in the inclusion of non-randomised data in network meta-analyses (NMAs) of randomised controlled trials (RCTs), analysts need to consider the implications of the differences in study designs as such data can be prone to increased bias due to the lack of randomisation and unmeasured confounding. This study aims to explore and extend a number of NMA models that account for the differences in the study designs, assessing their impact on the effect estimates and uncertainty. METHODS: Bayesian random-effects meta-analytic models, including naïve pooling and hierarchical models differentiating between the study designs, were extended to allow for the treatment class effect and accounting for bias, with further extensions allowing for bias terms to vary depending on the treatment class. Models were applied to an illustrative example in type 2 diabetes; using data from a systematic review of RCTs and non-randomised studies of two classes of glucose-lowering medications: sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists. RESULTS: Across all methods, the estimated mean differences in glycated haemoglobin after 24 and 52 weeks remained similar with the inclusion of observational data. The uncertainty around these estimates reduced when conducting naïve pooling, compared to NMA of RCT data alone, and remained similar when applying hierarchical model allowing for class effect. However, the uncertainty around these effect estimates increased when fitting hierarchical models allowing for the differences in study design. The impact on uncertainty varied between treatments when applying the bias adjustment models. Hierarchical models and bias adjustment models all provided a better fit in comparison to the naïve-pooling method. CONCLUSIONS: Hierarchical and bias adjustment NMA models accounting for study design may be more appropriate when conducting a NMA of RCTs and observational studies. The degree of uncertainty around the effectiveness estimates varied depending on the method but use of hierarchical models accounting for the study design resulted in increased uncertainty. Inclusion of non-randomised data may, however, result in inferences that are more generalisable and the models accounting for the differences in the study design allow for more detailed and appropriate modelling of complex data, preventing overly optimistic conclusions.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucose , Glycated Hemoglobin , Network Meta-Analysis , Randomized Controlled Trials as Topic
11.
BMC Public Health ; 22(1): 1827, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167529

ABSTRACT

BACKGROUND: There is a growing interest in the inclusion of real-world and observational studies in evidence synthesis such as meta-analysis and network meta-analysis in public health. While this approach offers great epidemiological opportunities, use of such studies often introduce a significant issue of double-counting of participants and databases in a single analysis. Therefore, this study aims to introduce and illustrate the nuances of double-counting of individuals in evidence synthesis including real-world and observational data with a focus on public health. METHODS: The issues associated with double-counting of individuals in evidence synthesis are highlighted with a number of case studies. Further, double-counting of information in varying scenarios is discussed with potential solutions highlighted. RESULTS: Use of studies of real-world data and/or established cohort studies, for example studies evaluating the effectiveness of therapies using health record data, often introduce a significant issue of double-counting of individuals and databases. This refers to the inclusion of the same individuals multiple times in a single analysis. Double-counting can occur in a number of manners, such as, when multiple studies utilise the same database, when there is overlapping timeframes of analysis or common treatment arms across studies. Some common practices to address this include synthesis of data only from peer-reviewed studies, utilising the study that provides the greatest information (e.g. largest, newest, greater outcomes reported) or analysing outcomes at different time points. CONCLUSIONS: While common practices currently used can mitigate some of the impact of double-counting of participants in evidence synthesis including real-world and observational studies, there is a clear need for methodological and guideline development to address this increasingly significant issue.


Subject(s)
Public Health , Databases, Factual , Forecasting , Humans , Meta-Analysis as Topic , Observational Studies as Topic
13.
Stat Med ; 41(25): 4961-4981, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35932152

ABSTRACT

Bivariate meta-analysis provides a useful framework for combining information across related studies and has been utilized to combine evidence from clinical studies to evaluate treatment efficacy on two outcomes. It has also been used to investigate surrogacy patterns between treatment effects on the surrogate endpoint and the final outcome. Surrogate endpoints play an important role in drug development when they can be used to measure treatment effect early compared to the final outcome and to predict clinical benefit or harm. The standard bivariate meta-analytic approach models the observed treatment effects on the surrogate and the final outcome outcomes jointly, at both the within-study and between-studies levels, using a bivariate normal distribution. For binomial data, a normal approximation on log odds ratio scale can be used. However, this method may lead to biased results when the proportions of events are close to one or zero, affecting the validation of surrogate endpoints. In this article, we explore modeling the two outcomes on the original binomial scale. First, we present a method that uses independent binomial likelihoods to model the within-study variability avoiding to approximate the observed treatment effects. However, the method ignores the within-study association. To overcome this issue, we propose a method using a bivariate copula with binomial marginals, which allows the model to account for the within-study association. We applied the methods to an illustrative example in chronic myeloid leukemia to investigate the surrogate relationship between complete cytogenetic response and event-free-survival.


Subject(s)
Bayes Theorem , Humans , Biomarkers/analysis , Normal Distribution , Treatment Outcome , Correlation of Data
14.
BMC Med Res Methodol ; 22(1): 186, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35818035

ABSTRACT

BACKGROUND: Increasingly in network meta-analysis (NMA), there is a need to incorporate non-randomised evidence to estimate relative treatment effects, and in particular in cases with limited randomised evidence, sometimes resulting in disconnected networks of treatments. When combining different sources of data, complex NMA methods are required to address issues associated with participant selection bias, incorporating single-arm trials (SATs), and synthesising a mixture of individual participant data (IPD) and aggregate data (AD). We develop NMA methods which synthesise data from SATs and randomised controlled trials (RCTs), using a mixture of IPD and AD, for a dichotomous outcome. METHODS: We propose methods under both contrast-based (CB) and arm-based (AB) parametrisations, and extend the methods to allow for both within- and across-trial adjustments for covariate effects. To illustrate the methods, we use an applied example investigating the effectiveness of biologic disease-modifying anti-rheumatic drugs for rheumatoid arthritis (RA). We applied the methods to a dataset obtained from a literature review consisting of 14 RCTs and an artificial dataset consisting of IPD from two SATs and AD from 12 RCTs, where the artificial dataset was created by removing the control arms from the only two trials assessing tocilizumab in the original dataset. RESULTS: Without adjustment for covariates, the CB method with independent baseline response parameters (CBunadjInd) underestimated the effectiveness of tocilizumab when applied to the artificial dataset compared to the original dataset, albeit with significant overlap in posterior distributions for treatment effect parameters. The CB method with exchangeable baseline response parameters produced effectiveness estimates in agreement with CBunadjInd, when the predicted baseline response estimates were similar to the observed baseline response. After adjustment for RA duration, there was a reduction in across-trial heterogeneity in baseline response but little change in treatment effect estimates. CONCLUSIONS: Our findings suggest incorporating SATs in NMA may be useful in some situations where a treatment is disconnected from a network of comparator treatments, due to a lack of comparative evidence, to estimate relative treatment effects. The reliability of effect estimates based on data from SATs may depend on adjustment for covariate effects, although further research is required to understand this in more detail.


Subject(s)
Network Meta-Analysis , Antirheumatic Agents , Arthritis, Rheumatoid/drug therapy , Bayes Theorem , Data Aggregation , Data Analysis , Humans , Randomized Controlled Trials as Topic , Review Literature as Topic
15.
J Clin Epidemiol ; 150: 171-178, 2022 10.
Article in English | MEDLINE | ID: mdl-35850425

ABSTRACT

OBJECTIVES: We aim to use real-world data in evidence synthesis to optimize an evidence base for the effectiveness of biologic therapies in rheumatoid arthritis to allow for evidence on first-line therapies to inform second-line effectiveness estimates. STUDY DESIGN AND SETTING: We use data from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis to supplement randomized controlled trials evidence obtained from the literature, by emulating target trials of treatment sequences to estimate treatment effects in each line of therapy. Treatment effects estimates from the target trials inform a bivariate network meta-analysis (NMA) of first-line and second-line treatments. RESULTS: Summary data were obtained from 21 trials of biologic therapies including two for second-line treatment and results from six emulated target trials of both treatment lines. Bivariate NMA resulted in a decrease in uncertainty around the effectiveness estimates of the second-line therapies, when compared to the results of univariate NMA, and allowed for predictions of treatment effects not evaluated in second-line randomized controlled trials. CONCLUSION: Bivariate NMA provides effectiveness estimates for all treatments in first and second line, including predicted effects in second line where these estimates did not exist in the data. This novel methodology may have further applications; for example, for bridging networks of trials in children and adults.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Adult , Child , Humans , Bayes Theorem , Antibodies, Monoclonal/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biological Therapy , Network Meta-Analysis , Registries , Antirheumatic Agents/therapeutic use
16.
Eur Geriatr Med ; 13(5): 1149-1157, 2022 10.
Article in English | MEDLINE | ID: mdl-35750959

ABSTRACT

INTRODUCTION: Frailty has emerged as an important construct to support clinical decision-making during the COVID-19 pandemic. However, doubts remain related to methodological limitations of published studies. METHODS: Retrospective cohort study of all people aged 75 + admitted to hospital in England between 1 March 2020 and 31 July 2021. COVID-19 and frailty risk were captured using International Classification of Disease-10 (ICD-10) diagnostic codes. We used the generalised gamma model to estimate accelerated failure time, reporting unadjusted and adjusted results. RESULTS: The cohort comprised 103,561 individuals, mean age 84.1, around half female, 82% were White British with a median of two comorbidities. Frailty risk was distributed approximately 20% low risk and 40% each at intermediate or high risk. In the unadjusted survival plots, 28-day mortality was almost 50% for those with an ICD-10 code of U071 (COVID-19 virus identified), and 25-35% for those with U072 (COVID-19 virus not identified). In the adjusted analysis, the accelerated failure time estimates for those with intermediate and high frailty risk were 0.63 (95% CI 0.58-0.68) and 0.67 (95% CI 0.62-0.72) fewer days alive respectively compared to those with low frailty risk with an ICD-10 diagnosis of U072 (reference category). CONCLUSION: In older people with confirmed COVID-19, both intermediate and high frailty risk were associated with reduced survival compared to those with low frailty risk.


Subject(s)
COVID-19 , Frailty , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Female , Frail Elderly , Frailty/complications , Frailty/epidemiology , Humans , Pandemics , Retrospective Studies
17.
PLoS Med ; 19(5): e1004015, 2022 05.
Article in English | MEDLINE | ID: mdl-35617423

ABSTRACT

BACKGROUND: Healthcare workers (HCWs), particularly those from ethnic minority groups, have been shown to be at disproportionately higher risk of infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) compared to the general population. However, there is insufficient evidence on how demographic and occupational factors influence infection risk among ethnic minority HCWs. METHODS AND FINDINGS: We conducted a cross-sectional analysis using data from the baseline questionnaire of the United Kingdom Research study into Ethnicity and Coronavirus Disease 2019 (COVID-19) Outcomes in Healthcare workers (UK-REACH) cohort study, administered between December 2020 and March 2021. We used logistic regression to examine associations of demographic, household, and occupational risk factors with SARS-CoV-2 infection (defined by polymerase chain reaction (PCR), serology, or suspected COVID-19) in a diverse group of HCWs. The primary exposure of interest was self-reported ethnicity. Among 10,772 HCWs who worked during the first UK national lockdown in March 2020, the median age was 45 (interquartile range [IQR] 35 to 54), 75.1% were female and 29.6% were from ethnic minority groups. A total of 2,496 (23.2%) reported previous SARS-CoV-2 infection. The fully adjusted model contained the following dependent variables: demographic factors (age, sex, ethnicity, migration status, deprivation, religiosity), household factors (living with key workers, shared spaces in accommodation, number of people in household), health factors (presence/absence of diabetes or immunosuppression, smoking history, shielding status, SARS-CoV-2 vaccination status), the extent of social mixing outside of the household, and occupational factors (job role, the area in which a participant worked, use of public transport to work, exposure to confirmed suspected COVID-19 patients, personal protective equipment [PPE] access, aerosol generating procedure exposure, night shift pattern, and the UK region of workplace). After adjustment, demographic and household factors associated with increased odds of infection included younger age, living with other key workers, and higher religiosity. Important occupational risk factors associated with increased odds of infection included attending to a higher number of COVID-19 positive patients (aOR 2.59, 95% CI 2.11 to 3.18 for ≥21 patients per week versus none), working in a nursing or midwifery role (1.30, 1.11 to 1.53, compared to doctors), reporting a lack of access to PPE (1.29, 1.17 to 1.43), and working in an ambulance (2.00, 1.56 to 2.58) or hospital inpatient setting (1.55, 1.38 to 1.75). Those who worked in intensive care units were less likely to have been infected (0.76, 0.64 to 0.92) than those who did not. Black HCWs were more likely to have been infected than their White colleagues, an effect which attenuated after adjustment for other known risk factors. This study is limited by self-selection bias and the cross sectional nature of the study means we cannot infer the direction of causality. CONCLUSIONS: We identified key sociodemographic and occupational risk factors associated with SARS-CoV-2 infection among UK HCWs, and have determined factors that might contribute to a disproportionate odds of infection in HCWs from Black ethnic groups. These findings demonstrate the importance of social and occupational factors in driving ethnic disparities in COVID-19 outcomes, and should inform policies, including targeted vaccination strategies and risk assessments aimed at protecting HCWs in future waves of the COVID-19 pandemic. TRIAL REGISTRATION: The study was prospectively registered at ISRCTN (reference number: ISRCTN11811602).


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Communicable Disease Control , Cross-Sectional Studies , Ethnicity , Female , Health Personnel , Humans , Male , Middle Aged , Minority Groups , Pandemics , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
18.
JAMA ; 327(19): 1875-1887, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35579641

ABSTRACT

Importance: Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement and is the treatment of choice for patients at high operative risk. The role of TAVI in patients at lower risk is unclear. Objective: To determine whether TAVI is noninferior to surgery in patients at moderately increased operative risk. Design, Setting, and Participants: In this randomized clinical trial conducted at 34 UK centers, 913 patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk due to age or comorbidity were enrolled between April 2014 and April 2018 and followed up through April 2019. Interventions: TAVI using any valve with a CE mark (indicating conformity of the valve with all legal and safety requirements for sale throughout the European Economic Area) and any access route (n = 458) or surgical aortic valve replacement (surgery; n = 455). Main Outcomes and Measures: The primary outcome was all-cause mortality at 1 year. The primary hypothesis was that TAVI was noninferior to surgery, with a noninferiority margin of 5% for the upper limit of the 1-sided 97.5% CI for the absolute between-group difference in mortality. There were 36 secondary outcomes (30 reported herein), including duration of hospital stay, major bleeding events, vascular complications, conduction disturbance requiring pacemaker implantation, and aortic regurgitation. Results: Among 913 patients randomized (median age, 81 years [IQR, 78 to 84 years]; 424 [46%] were female; median Society of Thoracic Surgeons mortality risk score, 2.6% [IQR, 2.0% to 3.4%]), 912 (99.9%) completed follow-up and were included in the noninferiority analysis. At 1 year, there were 21 deaths (4.6%) in the TAVI group and 30 deaths (6.6%) in the surgery group, with an adjusted absolute risk difference of -2.0% (1-sided 97.5% CI, -∞ to 1.2%; P < .001 for noninferiority). Of 30 prespecified secondary outcomes reported herein, 24 showed no significant difference at 1 year. TAVI was associated with significantly shorter postprocedural hospitalization (median of 3 days [IQR, 2 to 5 days] vs 8 days [IQR, 6 to 13 days] in the surgery group). At 1 year, there were significantly fewer major bleeding events after TAVI compared with surgery (7.2% vs 20.2%, respectively; adjusted hazard ratio [HR], 0.33 [95% CI, 0.24 to 0.45]) but significantly more vascular complications (10.3% vs 2.4%; adjusted HR, 4.42 [95% CI, 2.54 to 7.71]), conduction disturbances requiring pacemaker implantation (14.2% vs 7.3%; adjusted HR, 2.05 [95% CI, 1.43 to 2.94]), and mild (38.3% vs 11.7%) or moderate (2.3% vs 0.6%) aortic regurgitation (adjusted odds ratio for mild, moderate, or severe [no instance of severe reported] aortic regurgitation combined vs none, 4.89 [95% CI, 3.08 to 7.75]). Conclusions and Relevance: Among patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk, TAVI was noninferior to surgery with respect to all-cause mortality at 1 year. Trial Registration: isrctn.com Identifier: ISRCTN57819173.


Subject(s)
Aortic Valve Stenosis , Transcatheter Aortic Valve Replacement , Aged , Aged, 80 and over , Aortic Valve/surgery , Aortic Valve Insufficiency/etiology , Aortic Valve Stenosis/mortality , Aortic Valve Stenosis/surgery , Female , Heart Valve Prosthesis , Heart Valve Prosthesis Implantation/adverse effects , Heart Valve Prosthesis Implantation/methods , Heart Valve Prosthesis Implantation/mortality , Humans , Male , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/mortality , Treatment Outcome
19.
J Comp Eff Res ; 11(5): 347-370, 2022 04.
Article in English | MEDLINE | ID: mdl-35040693

ABSTRACT

Aim: To conduct indirect treatment comparisons between risdiplam and other approved treatments for spinal muscular atrophy (SMA). Patients & methods: Individual patient data from risdiplam trials were compared with aggregated data from published studies of nusinersen and onasemnogene abeparvovec, accounting for heterogeneity across studies. Results: In Type 1 SMA, studies of risdiplam and nusinersen included similar populations. Indirect comparison results found improved survival and motor function with risdiplam versus nusinersen. Comparison with onasemnogene abeparvovec in Type 1 SMA and with nusinersen in Types 2/3 SMA was challenging due to substantial differences in study populations; no concrete conclusions could be drawn from the indirect comparison analyses. Conclusion: Indirect comparisons support risdiplam as a superior alternative to nusinersen in Type 1 SMA.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Azo Compounds , Humans , Muscular Atrophy, Spinal/drug therapy , Pyrimidines , Spinal Muscular Atrophies of Childhood/drug therapy
20.
Adv Ther ; 39(1): 193-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34881414

ABSTRACT

Delaying disease progression and reducing the risk of mortality are key goals in the treatment of chronic kidney disease (CKD). New drug classes to augment renin-angiotensin-aldosterone system (RAAS) inhibitors as the standard of care have scarcely met their primary endpoints until recently. This systematic literature review explored treatments evaluated in patients with CKD since 1990 to understand what contemporary data add to the treatment landscape. Eighty-nine clinical trials were identified that had enrolled patients with estimated glomerular filtration rate 13.9-102.8 mL/min/1.73 m2 and urinary albumin-to-creatinine ratio (UACR) 29.9-2911.0 mg/g, with (75.5%) and without (20.6%) type 2 diabetes (T2D). Clinically objective outcomes of kidney failure and all-cause mortality (ACM) were reported in 32 and 64 trials, respectively. Significant reductions (P < 0.05) in the risk of kidney failure were observed in seven trials: five small trials published before 2008 had evaluated the RAAS inhibitors losartan, benazepril, or ramipril in patients with (n = 751) or without (n = 84-436) T2D; two larger trials (n = 2152-2202) published onwards of 2019 had evaluated the sodium-glucose co-transporter 2 (SGLT2) inhibitors canagliflozin (in patients with T2D and UACR > 300-5000 mg/g) and dapagliflozin (in patients with or without T2D and UACR 200-5000 mg/g) added to a background of RAAS inhibition. Significant reductions in ACM were observed with dapagliflozin in the DAPA-CKD trial. Contemporary data therefore suggest that augmenting RAAS inhibitors with new drug classes has the potential to improve clinical outcomes in a broad range of patients with CKD.


Subject(s)
Diabetes Mellitus, Type 2 , Renal Insufficiency, Chronic , Sodium-Glucose Transporter 2 Inhibitors , Diabetes Mellitus, Type 2/complications , Glomerular Filtration Rate , Humans , Randomized Controlled Trials as Topic , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...