Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
BMC Plant Biol ; 24(1): 569, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886652

ABSTRACT

BACKGROUND: Changing climate is causing erratic rainfall and prolonged drought periods, thus posing serious threats to crop productivity. Owing to severity of drought events, it is imperative to take proactive measures to enhance the resilience of drought sensitive crops like rice. Therefore, the present study was carried out to improve the drought stress tolerance in rice through gamma amino butyric acid (GABA) application. METHODS: The experiment was included four GABA concentrations i.e., 0 mM as control, 1 mM, 1.5 mM, and 2 mM, two water levels i.e., 100% and 50% field capacity (referred as FC100 for well-watered and FC50 for drought conditions, respectively), and two fragrant rice cultivars i.e., Super Basmati and Basmati-515. RESULTS: The findings unveiled a comprehensive improvement in various parameters with GABA application in fragrant rice under both well-watered (FC100) and water-limited (FC50) conditions, compared to the control. Specifically, GABA induced enhancements were observed in plant height, root length, fresh weight, dry weight, total soluble protein content, and total free amino acid content across both cultivars. Moreover, GABA application significantly improved peroxidase (POD) and catalase (CAT) enzyme activities, alongside elevating anthocyanin levels, while concurrently reducing H2O2 contents in both FC100 and FC50 treatments. Furthermore, the positive impact of GABA extended to morphological traits, with notable increases in panicle length, total tillers and productive tillers per hill, branch and grain numbers per panicle, and 1000-grain weight for Super Basmati and Basmati 515 cultivars under both water regimes, compared to Ck. Similarly, the grain yield increased by 31.01% and 27.32% under FC100 and 36.85% and 27.71% under FC50 in Super Basmati and Basmati-515, respectively, in response to GABA application, compared to Ck. Additionally, principal component analysis (PCA) revealed significant variances attributed to Dim1 and Dim2, with 86.1% and 4.0% of the variance, respectively, across three bi-plots encompassing rice cultivars, water levels, and GABA treatments. Notably, all tested indices, except for H2O2 and non-productive tillers per hill, exhibited positive correlations amongst themselves and with rice yield, further emphasizing the beneficial effects of GABA application on fragrant rice under well-watered and drought conditions. CONCLUSIONS: GABA significantly improved fragrant rice performance under both well-watered (FC100) and water-limited (FC50) conditions. Moreover, integrating GABA application into rice cultivation practices could not only improve the crop resilience to drought stress but also potentially benefiting the future food and nutritional security globally. However, however; further research is needed to understand the cellular and molecular mechanisms of the functionality of GABA in fragrant rice, particularly under drought conditions.


Subject(s)
Droughts , Oryza , gamma-Aminobutyric Acid , Oryza/physiology , Oryza/growth & development , Oryza/drug effects , Oryza/metabolism , gamma-Aminobutyric Acid/metabolism , Water/metabolism
2.
Sci Total Environ ; 943: 173879, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857798

ABSTRACT

Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.


Subject(s)
Environmental Monitoring , Mercury , Soil Pollutants , Soil , Mercury/analysis , Pakistan , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Oryza/chemistry
3.
Plant Physiol Biochem ; 213: 108839, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879986

ABSTRACT

Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.


Subject(s)
Droughts , Mycorrhizae , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Mycorrhizae/physiology , Photosynthesis , Plant Roots/microbiology , Plant Roots/growth & development , Glomeromycota/physiology , Glomeromycota/growth & development , Water/metabolism , Biomass , Fungi
4.
J Exp Zool B Mol Dev Evol ; 342(2): 85-100, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369890

ABSTRACT

TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.


Subject(s)
Fingers/abnormalities , Hair Diseases , Langer-Giedion Syndrome , Nose/abnormalities , Regulatory Sequences, Nucleic Acid , Zebrafish , Animals , Mice , Humans , Zebrafish/genetics , Zebrafish/metabolism , Genome , Base Sequence , Gene Expression , Mammals/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
5.
Sci Total Environ ; 917: 170417, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280611

ABSTRACT

Drought is a potent abiotic stressor that arrests crop growth, significantly affecting crop health and yields. The arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR) can offer to protect plants from stressful environments through improving water, and nutrient use efficiency by strengthening plant root structure and harnessing favorable rhizosphere environments. When Acaulospora laevis (AMF) and Bacillus subtilus (PGPR) are introduced in combination, enhanced root growth and beneficial microbial colonization can mitigate drought stress. To assess this potential, a pot experiment was done with maize (Zea mays L.) to explore the effects of A. laevis and B. subtilus under different water levels (well-watered = 80 %; moderate water stress = 55 %; and severe water stress = 35 %) on maize yield, soil microbial activities, nutrients contents, root, and leaf functioning. Plants exposed to severe drought stress hampered their root and leaf functioning, and reduced grain yield compared with control plants. Combined use of AMF and PGPR increased root colonization (104.6 %-113.2 %) and microbial biomass carbon (36.38 %-40.23 %) under moderate to severe drought conditions over control. Higher root colonization was strongly linked with elevated ACC (aminocyclopropane-1-carboxylic acid) production, subsequently enhancing water use efficiency (21.62 %-12.77 %), root hydraulic conductivity (1.9 %-1.4 %) and root nutrient uptake under moderate to severe drought conditions. Enhanced nutrient uptake further promoted leaf photosynthetic rate by 27.3 %-29.8 % under moderate and severe drought stress. Improving leaf and root physiological functioning enhanced maize grain yield under stressful environments. Furthermore, co-inoculation with AMF-PGPR reduced cellular damage by lowering oxidative enzyme levels and increasing antioxidative enzyme activities, improving plant performance and grain yield under stressful environments. Conclusively, the synergistic interaction of AMF with PGPR ensured plant stress tolerance by reducing cellular injury, facilitating root-leaf functioning, enhancing nutrient-water-use-efficiencies, and increasing yield under drought stress.


Subject(s)
Mycorrhizae , Mycorrhizae/physiology , Zea mays , Soil , Plant Roots/microbiology , Feedback , Dehydration
6.
Dev Growth Differ ; 66(1): 75-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925606

ABSTRACT

Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.


Subject(s)
Enhancer Elements, Genetic , Zebrafish , Animals , Humans , Zebrafish/genetics , Zebrafish/metabolism , Enhancer Elements, Genetic/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Animals, Genetically Modified , Mammals , Evolution, Molecular , Conserved Sequence/genetics
7.
Psychol Res Behav Manag ; 16: 5069-5088, 2023.
Article in English | MEDLINE | ID: mdl-38144233

ABSTRACT

Purpose: Retail businesses have been seeing dramatic changes in the last decades. It has evolved from single-channel retailing to omnichannel retailing, providing a seamless shopping experience to customers. Customers armed with modern technology are creating challenges for retailers and forcing them to create an omnichannel environment. So, implementing an omnichannel retailing strategy is a big challenge for retail managers in the age of modern technologies. Retailers could evaluate consumers' usage intention of omnichannel retailing based on technological and psychological factors. However, research based on psychological factors is limited in the prevailing literature on omnichannel retailing. Based on the Motivational Model (MM) and Big-Five Factors (BFF) of personality traits, the study tried to fill the gap regarding the influence of psychological factors on omnichannel usage intention. Methods: A sample of 724 respondents through a structured questionnaire from a developing economy. The target population of the current study was internet users, as they might be prospective Omni shoppers in the near future. Relationships were tested through Structural Equation Modeling (SEM) with AMOS 23. Results: Results revealed that personality traits directly correlate with omnichannel usage intention, while motivations (intrinsic and extrinsic) partially mediate these relationships. Moreover, the results of the current study also revealed that the personality traits extraversion, agreeableness, and conscientiousness are vital antecedents of behavioral intention. Intrinsic and extrinsic motivations positively impact consumers' usage intention, while extrinsic motivation partially mediates intrinsic motivation and consumers' usage intention. Additionally, full mediation prevails in the association of consumers' usage intention and personality traits (emotional stability and Openness to experiences). Originality: The domino effects provide a solid theoretical milestone in understanding the phenomenon of omnichannel retailing strategy and facilitates marketing managers to design channel strategies for emerging economics.

8.
ACS Omega ; 8(33): 29959-29965, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636967

ABSTRACT

Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.

9.
Comput Biol Chem ; 106: 107932, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37487249

ABSTRACT

Lipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme. The FT94, FT95 and FT97 compounds revealed binding affinity scores of -8.585 kcal mol- 1, -7.660 kcal mol- 1 and -7.351 kcal mol- 1, respectively. Furthermore, dynamics analysis pointed the systems high structure dynamics. The docking and simulation results were validated by binding free energies, demonstrating solid intermolecular interactions and in the assay in vitro, the Minimal Inhibitory Concentration (MIC) of FT97 to Staphylococcus aureus (S. aureus) was 62.5 µg/mL. In conclusion, a moderate inhibitory response of peptoid FT97 was observed against the Gram-positive bacteria, S. aureus and B. cereus.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Lipopeptides/pharmacology
10.
Lasers Med Sci ; 38(1): 149, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365431

ABSTRACT

Medicinal plants play a vital role in herbal medical field and allopathic medicine field industry. Chemical and spectroscopic studies of Taraxacum officinale, Hyoscyamus niger, Ajuga bracteosa, Elaeagnus angustifolia, Camellia sinensis, and Berberis lyceum are conducted in this paper by using a 532-nm Nd:YAG laser in an open air environment. These medicinal plant's leaves, roots, seed, and flowers are used to treat a range of diseases by the locals. It is crucial to be able to distinguish between beneficial and detrimental metal elements in these plants. We demonstrated how various elements are categorized and how roots, leaves, seeds and flowers of same plants differ from each other on the basis of elemental analysis. Furthermore, for classification purpose, different classification models, partial least square discriminant analysis (PLS-DA), k-nearest neighbors (kNN), and principal component analysis (PCA) are used. We found silicon (Si), aluminum (Al), iron (Fe), copper (Cu), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), manganese (Mn), phosphorous (P), and vanadium (V) in all of the medicinal plant samples with a molecular form of carbon and nitrogen band. We detected Ca, Mg, Si, and P as primary components in all of the plant samples, as well as V, Fe, Mn, Al, and Ti as essential medicinal metals, and additional trace elements like Si, Sr, and Al. The result's findings show that the PLS-DA classification model with single normal variate (SNV) preprocessing method is the most effective classification model for different types of plant samples. The average correct classification rate obtained for PLS-DA with SNV is 95%. Moreover, laser-induced breakdown spectroscopy (LIBS) was successfully employed to perform rapid, sensitive, and quantitative trace element analysis on medicinal herbs and plant samples.


Subject(s)
Lasers, Solid-State , Plants, Medicinal , Trace Elements , Plants, Medicinal/chemistry , Chemometrics , Spectrum Analysis/methods , Trace Elements/analysis , Magnesium/analysis , Magnesium/chemistry , Calcium/analysis , Sodium
11.
Food Sci Nutr ; 11(3): 1247-1256, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911832

ABSTRACT

Olive (Olea europaea L.) has triacylglycerols, phenolics, and other antioxidants in its composition playing significant roles in maintaining health and reducing the onset of diseases. This study aimed to analyze the quality, antioxidant, textural profile, and sensory properties of processed Cheddar cheese fortified with 0%, 5%, 10%, 15%, and 20% (v/w) olive oil-whey protein isolate emulsion during 60 days of storage period. The results showed that processed cheese had significantly higher (p < .05) antioxidant activity, and total phenolic and flavonoids contents, whereas nonsignificant increase (p > .05) in moisture and acidity while decreasing tendencies in pH, fat, protein, and ash contents. Sensory analysis showed that processed Cheddar cheese with 5% emulsion had higher taste, aroma, texture/appearance, overall acceptability scores, and hardness. Conclusively, results indicated that olive oil-whey protein isolate emulsion could be beneficial for manufacturing and commercializing processed cheeses, analogs, or spreads with improved nutritional value and sensory characteristics.

12.
BMC Mol Cell Biol ; 24(1): 13, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991330

ABSTRACT

BACKGROUND: Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation. RESULTS: To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele. CONCLUSION: These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might. have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution. METHODS: The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.


Subject(s)
Prosencephalon , Regulatory Sequences, Nucleic Acid , Humans , Molecular Docking Simulation , DNA , Nucleotides
13.
Heliyon ; 9(3): e14584, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967941

ABSTRACT

Clean water and sanitation and climate actions represent two of the seventeen United Nations Sustainable Development Goals (SDGs). Although challenging, the two goals can be achieved by 2030 through unconventional and innovative solutions. Scientific research related to clean water and sanitation (SDG 6) and urgent actions to combat climate change and its impacts (SDG 13) will help develop new technologies to support the two goals and can bridge the gap between practitioners and academia's to achieve sustainability. The Gulf Cooperation Council (GCC) countries are located in an arid region. Their water and climate research activities and outcomes may provide a good contribution toward achieving the two goals. This study used text mining and bibliometric methods to analyze water and climate research contributions to achieve SDGs 6 and 13 in GCC countries. Results revealed that there is an increase in research publications after 2016 in the areas of water and climate in the GCC countries involving a longstanding international collaboration with developed countries. Research topics were focused on wastewater treatment, contamination, heavy metal, groundwater, and climate change impacts. Under SDG 6, most of the publications were research articles (77.3%), followed by reviews (11.1%), and the rest were book chapters and conference papers. For SDG 13, 75.1% of the publications are research articles, 10.9% are conference papers, and 8% are reviews. The research outcomes in the GCC countries have clearly contributed to the development of water and climate strategies and international collaborations to achieve the two goals.

14.
Nutrients ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771374

ABSTRACT

The Syzygium cumini (L.) Skeels is reported to have medicinal properties, but its benefits on age-related neurological changes have not been previously explored. In the current study, after phytochemical analysis of the pulp of Syzygium cumini (L.) Skeels fruit (Sy. cmi), young BALB/c mice have been supplemented with its 5, 15, and 30% dilution for 16 months, followed by behavioral experimentation and biochemical evaluation of isolated brains. The Sy. cmi has been found enriched with phenols/flavonoids while the occurrence of nine phytocompounds has been identified through GC-MS analysis. Further, Sy. cmi supplementation has caused significant (p < 0.05) protection from anxiety-like behavior in aged mice, and they have explored open, illuminated, and exposed areas of open field, light/dark, and an elevated plus maze, respectively. Furthermore, these animals have shown improved cognitive abilities as their percent (%) spontaneous alteration and novelty preference are significantly greater in T-maze and Y-maze and familiarity/novelty recognition tests. Further, Sy. cmi-supplemented mice remember the aversive stimuli zone and escape box location in passive avoidance and Barnes maze tests, and their brains have low levels of malondialdehyde and acetylcholinesterase with elevated antioxidant enzymes. The outcomes have provided scientific insight into the beneficial effects of Sy. cmi on age-associated amnesia that might be attributed to antioxidant and anticholinergic effects exerted by phytocompounds (caryophyllene, humulene, ß-Farnesene, and phytol) owned by Syzygium cumini.


Subject(s)
Syzygium , Animals , Mice , Acetylcholinesterase , Antioxidants/pharmacology , Cognition , Dietary Supplements , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/chemistry , Syzygium/chemistry
15.
Sci Rep ; 12(1): 18952, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36347946

ABSTRACT

Salinity and water stress are serious environmental issues that reduced crop production worldwide. The current research was initiated (2012) in the wirehouse of the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan to investigate the growth, stress tolerance, and physiological responses of guava to salinity and water shortage. Guava was grown for one year in pots containing soil with Eight treatments (control, 10 dS m-1, 20 dS m-1, 40 dS m-1, control + water stress (WS), 10 dS m-1 + WS, 20 dS m-1 + WS, 40 dS m-1 + WS) in a completely randomized design. The results indicated that plant growth, stress tolerance, and physiological parameters declined at higher salinity and water stress and could not survive at 40 dS m-1. The 20 dS m-1 + WS caused a > 70% decline in dry weights of shoot and root regarding control. Similarly, the highest decrease in stress tolerance was noticed in 20 dS m-1 + WS followed by the 20 dS m-1 treatment than control. Our findings validated that guava can be cultivated on soils having salinity ≤ 10 dS m-1 but it could not be cultivated on soils having salinity ≥ 20 dS m-1 with limited water supply.


Subject(s)
Psidium , Salinity , Dehydration , Sodium Chloride , Soil , Stress, Physiological
16.
PLoS One ; 17(11): e0273857, 2022.
Article in English | MEDLINE | ID: mdl-36383564

ABSTRACT

Globally, the prevalence of vit-A deficiency disorders i.e., xerophthalmia and nyctalopia is increasing especially in teenagers due to lifestyle shifts and undernutrition. This research was designed to develop carrot-supplemented tomato sauce to overcome vit-A deficiency and its related disorders. The carrot sauce was formulated with the addition of 50, 60, and 70% carrot pulp in tomato paste. The prepared sauce samples were tested for physical and biochemical changes in beta carotene (BC), lycopene, viscosity, pH, total soluble solids, titratable acidity, total plate count, and sensory parameters for 12 weeks. A non-significant effect of storage on BC, lycopene, and total soluble solids was observed. The total plate count, acidity, pH, and viscosity were influenced significantly. Sauce containing 60% of the carrot paste showed good sensory characteristics and 42.39 µg/g BC for the whole period of storage. It is concluded that carrot sauce can be used as tomato ketchup replacers to boost the overall quality of life by fighting against vit-A deficiency disorders.


Subject(s)
Daucus carota , Solanum lycopersicum , Humans , Adolescent , Lycopene , Carotenoids , Quality of Life , beta Carotene , Vitamin A
17.
Front Public Health ; 10: 974642, 2022.
Article in English | MEDLINE | ID: mdl-36249232

ABSTRACT

Prior studies have revealed that leaders' ethical behaviors significantly influence employees' wellbeing. However, it's unclear how to increase the positive impact of leaders' ethical behaviors on employees' wellbeing by overseeing the negative workplace emotion. So, this study examines the salient concern of leaders' ethical behaviors that affect employees' negative emotions (workplace embitterment) and, consequently, their wellbeing according to appraisal theories of emotions. The study also investigates the active role of followers' core self-evaluation in moderating the impact of leaders' ethical behaviors on followers' emotions and wellbeing via the mediational chain. Data is collected in two-time intervals with 6 weeks interims through a structured questionnaire from 398 academics of public sector universities in Pakistan. The structured equation modeling and Process Macro 2017 are the tools for data analysis. Findings of this study show that (1) ethical behaviors by leaders have a negative impact on employee workplace embitterment, (2) workplace embitterment completely mediates the association between ethical behaviors of leaders and employee wellbeing, and (3) when leaders do not exhibit ethical behaviors, workplace embitterment is lessened showing high core self-evaluations by employees. In addition, the study findings also reveal that employees' core self-evaluation moderates the effect of leaders' ethical behaviors through workplace embitterment. This study validates the significant role of a leader's ethical behaviors in nourishing employee wellbeing by preventing negative emotions. The study is also significant as it examines how followers' attribute core self-evaluation: (1) can be a substitute for leaders' ethical behaviors and (2) can actively modify the effect of leaders' ethical behaviors on followers' negative emotions and then wellbeing. The study also discussed its contributions in theory and to organizations.


Subject(s)
Leadership , Workplace , Humans , Pakistan , Surveys and Questionnaires
18.
Front Psychol ; 13: 919020, 2022.
Article in English | MEDLINE | ID: mdl-35898987

ABSTRACT

The globalization of markets and consumer behavior has changed dramatically in recent years. Similarly, global and local brands are facing many challenges in emerging markets. Thus, in this backdrop, this research is intended to examine the impact of consumer perceptions of brand localness and globalness on brand attitude in order to predict consumer behavioral intentions (purchase intention, price premium, and word of mouth) in cross-cultural emerging markets (China and Pakistan). Additionally, this research considered the moderating effects of consumer ethnocentrism and brand familiarity as a control variable. This study used an online survey to examine 1,562 responses from Chinese (n = 768) and Pakistani (n = 794) consumers regarding local and global brands. The proposed hypotheses were analyzed by using the partial least square-structural equation modeling method. The findings indicated that the consumer perceptions of brand localness and brand globalness had a substantial impact on brand attitude, which in turn favorably influenced consumer behavioral intentions in China and Pakistan. The brand attitude was a crucial mediator in both markets but was more critical in China than Pakistan. The interaction moderating effects of consumer ethnocentrism and consumer perceptions of brand localness positively influenced brand attitude in China, whereas consumer ethnocentrism and consumer perceptions of brand globalness negatively influenced brand attitude in Pakistan. Interestingly, brand familiarity was discovered a substantial control variable in both markets, except for purchase intention in Pakistan. This research contributed to Fishbein's attitude theory and social identity theory. This research offers important recommendations to local and global marketers and brand managers in formulating and employing several positioning, market segmentation, and targeting strategies that may assist them in competing effectively in emerging markets.

19.
J Infect Public Health ; 15(8): 878-891, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35839568

ABSTRACT

BACKGROUND: With the rapid development of the genomic sequence data for the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants Delta (B.1.617.2) and Omicron (B.1.1.529), it is vital to successfully identify mutations within the genome. OBJECTIVE: The main objective of the study is to investigate the full-length genome mutation analysis of 157 SARS-CoV-2 and its variant Delta and Omicron isolates. This study also provides possible effects at the structural level to understand the role of mutations and new insights into the evolution of COVID-19 and evaluates the differential level analysis in viral genome sequence among different nations. We have also tried to offer a mutation snapshot for these differences that could help in vaccine formulation. This study utilizes a unique and efficient method of targeting the stable genes for the drug discovery approach. METHODS: Complete genome sequence information of SARS-CoV-2, Delta, and Omicron from online resources were used to predict structure domain identification, data mining, and screening; employing different bioinformatics tools. BioEdit software was used to perform their genomic alignments across countries and a phylogenetic tree as per the confidence of 500 bootstrapping values was constructed. Heterozygosity ratios were determined in-silico. A minimum spanning network (MSN) of selected populations was determined by Bruvo's distance role-based framework. RESULTS: Out of all 157 different strains of SARS-CoV-2 and its variants, and their complete genome sequences from different countries, Corona nucleoca and DUF5515 were observed to be the most conserved domains. All genomes obtained changes in comparison to the Wuhan-Hu-1 strain, mainly in the TRS region (CUAAAC or ACGAAC). We discovered 596 mutations in all genes, with the highest number (321) found in ORF1ab (QHD43415.1), or TRS site mutations found only in ORF7a (1) and ORF10 (2). The Omicron variant has 30 mutations in the Spike protein and has a higher alpha-helix shape (23.46%) than the Delta version (22.03%). T478 was also discovered to be a prevalent polymorphism in Delta and Omicron variations, as well as genomic gaps ranging from 45 to 65aa. All 157 sequences contained variations and conformed to Nei's Genetic distance. We discovered heterozygosity (Hs) 0.01, mean anticipated Hs 0.32, the genetic diversity index (GDI) 0.01943989, and GD within population 0.01266951. The Hedrick value was 0.52324978, the GD coefficient was 0.52324978, the average Hs was 0.01371452, and the GD coefficient was 0.52324978. Among other countries, Brazil has the highest standard error (SE) rate (1.398), whereas Japan has the highest ratio of Nei's gene diversity (0.01). CONCLUSIONS: The study's findings will assist in comprehending the shape and kind of complete genome, their streaming genomic sequences, and mutations in various additions of SARS-CoV-2, as well as its different variant strains like Omicron. These results will provide a scientific basis to design the vaccines and understand the genomic study of these viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Mutation , Phylogeny , SARS-CoV-2/genetics
20.
Environ Sci Pollut Res Int ; 29(35): 52618-52634, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35262893

ABSTRACT

As a result of extreme modifications in human activity during the COVID-19 pandemic, the status of air quality has recently been improved. This bibliometric study was conducted on a global scale to quantify the impact of the COVID-19 pandemic on air pollution, identify the emerging challenges, and discuss the future perspectives during the course of the ongoing COVID-19 pandemic. For this, we have estimated the scientific production trends between 2020 and 2021 and investigated the contributions of countries, institutions, authors, and most prominent journals metrics network analysis on the topic of COVID-19 combined with air pollution research spanning the period between January 01, 2020, and June 21, 2021. The search strategy retrieved a wide range of 2003 studies published in scientific journals from the Web of Sciences Core Collection (WoSCC). The findings indicated that (1) publications on COVID-19 pandemic and air pollution were 990 (research articles) in 2021 with 1870 citations; however, the year 2020 witnessed only 830 research articles with a large number 16,600 of citations. (2) China ranked first in the number of publications (n = 365; 18.22% of the global output) and was the main country in international cooperation network, followed by the USA (n = 278; 13.87% of the global output) and India (n = 216; 10.78 of the total articles). (3) By exploring the co-occurrence and links strengths of keywords "COVID-19" (1075; 1092), "air pollution" (286; 771), "SARS-COV-2" (252; 1986). (4) The lessons deduced from the COVID-19 pandemic provide defined measures to reduce air pollution globally. The outcomes of the present study also provide useful guidelines for future research programs and constitute a baseline for researchers in the domain of environmental and health sciences to estimate the potential impact of the COVID-19 pandemic on air pollution.


Subject(s)
Air Pollution , COVID-19 , Bibliometrics , COVID-19/epidemiology , Pandemics , Publications
SELECTION OF CITATIONS
SEARCH DETAIL
...