Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38005210

ABSTRACT

Polychlorinated dibenzofurans (PCDFs) are persistent toxic compounds that are ubiquitous in the environment. Nanocomposites of titanium(IV) oxide-vanadium(III) oxide (Ti3V2O7) and titanium(IV) oxide-silicon dioxide (Ti2Si7O30) were prepared and spectroscopically analyzed as potential decontaminants for dioxin-like materials. The analysis confirmed a homogeneous morphology with nanoscale particle size. The Ti-Si sample was found to have a high surface area compared to the Ti-V composite. Vanadium(III) oxide (V2O5) and silicon dioxide (SiO2) were chosen as materials for the formation of heterogeneous compounds with titanium(IV) oxide (TiO2) because they possess a suitable band alignment with TiO2, thus forming effective photocatalysts. This study evaluated the photodegradation of 2,3,7,8-tetrachlorodibenzo-furan (TCDF) in the presence of Ti-Si and Ti-V oxide composites, which was tested using high- (254 nm) and midenergy (302 nm) UV irradiation sources. While Ti-Si showed success in the photodegradation of 2,3,7,8-TCDF dissolved in a (1:1) methanol-tetrahydrofuran (MeOH-THF) solution, the Ti-V composite proved to be a powerful material in adsorbing TCDF with a high capacity immediately upon mixing. Ti-Si oxide was found to decompose TCDF under the two irradiation sources with 98-99% degradation occurring after 70 min. The use of 254 nm as an irradiation source in the presence of Ti-Si was 4.3 times faster than the analogue reaction irradiated without a catalyst. Byproducts of the degradation were evaluated using gas chromatography-mass spectrometry (GC-MS), resulting in a lower chlorinated congener and less toxicity, as the main degradation product.

2.
Sci Total Environ ; 569-570: 262-268, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27343945

ABSTRACT

Hookah (waterpipe) smoking is a very common practice that has spread globally. There is growing evidence on the hazardous consequences of smoking hookah, with studies indicating that its harmful effects are comparable to cigarette smoking if not worse. Charcoal is commonly used as a heating source for hookah smoke. Although charcoal briquettes are thought to be one of the major contributors to toxicity, their composition and impact on the smoke generated remains largely unidentified. This study aims to analyze the elemental composition of five different raw synthetic and natural charcoals by using Carbon-Hydrogen-Nitrogen (CHN) analysis, inductively coupled plasma (ICP), and scanning electron microscopy coupled with energy dispersive X-Ray spectrometry (SEM-EDS). Elemental analysis showed that the raw charcoals contain heavy metals such as zinc, iron, cadmium, vanadium, aluminum, lead, chromium, manganese and cobalt at concentrations similar, if not higher than, cigarettes. In addition, thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) was used to analyze the chemical composition of the smoke produced from burning the charcoal samples. The smoke emitted from charcoal was found to be the source of numerous compounds which could be hazardous to health. A total of seven carcinogens, 39 central nervous system depressants and 31 respiratory irritants were identified.


Subject(s)
Carcinogens/analysis , Charcoal/analysis , Metals, Heavy/analysis , Smoke/analysis , Smoking Water Pipes , Smoking/adverse effects
3.
Environ Sci Pollut Res Int ; 22(5): 3186-92, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24562452

ABSTRACT

Two samples of silver doped into zeolite Y were prepared and characterized. ICP and SEM-EDS analysis indicate that the AgY1 sample contains twice the amount of silver compared to the AgY2 sample. Solid state luminescence spectroscopy shows variations in the emission modes of the site-selective luminescence where various luminophores might be excited upon selecting the proper excitation energy. The selected material effectively decomposed the pesticide fenoxycarb in aqueous solution. The photodecomposition of fenoxycarb reached 80 % upon irradiation for 60 min in the presence of the AgY1 catalyst. 2-(4-Phenoxy-phenoxy)ethyl] carbamic acid (1) and 1-amine-2-(phenoxy-4-ol) ethane (2) were identified as products for both uncatalyzed solution and the catalyzed fenoxycarb with AgY2 catalyst. Whereas, compound (2) was the only product identified in the catalyzed reaction with AgY1.


Subject(s)
Insecticides/chemistry , Phenylcarbamates/chemistry , Silver/chemistry , Zeolites/chemistry , Catalysis , Luminescence , Photolysis , Silver/radiation effects , Spectrum Analysis , Ultraviolet Rays , Zeolites/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...