Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sensors (Basel) ; 21(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34960517

ABSTRACT

Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks: an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users' daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either "potentially COVID-19 infected" or "no evident signs of infection". We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).


Subject(s)
COVID-19 , Wearable Electronic Devices , Artificial Intelligence , Humans , SARS-CoV-2 , Smartphone
3.
Educ Inf Technol (Dordr) ; 26(6): 6719-6746, 2021.
Article in English | MEDLINE | ID: mdl-33814958

ABSTRACT

With the advent of COVID-19 arose the need for social distancing measures, including the imposition of far-reaching lockdowns in many countries. The lockdown has wreaked havoc on many aspects of daily life, but education has been particularly hard hit by this unprecedented situation. The closure of educational institutions brought along many changes, including the transition to more technology-based education. This is a systematic literature review that seeks to explore the transition, in the context of the pandemic, from traditional education that involves face-to-face interaction in physical classrooms to online distance education. It examines the ways in which this transition has impacted academia and students and looks at the potential long-term consequences it may have caused. It also presents some of the suggestions made by the studies included in the paper, which may help alleviate the negative impact of lockdown on education and promote a smoother transition to online learning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10639-021-10507-1.

4.
Waste Manag ; 109: 231-246, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32428727

ABSTRACT

The waste management processes typically involve numerous technical, climatic, environmental, demographic, socio-economic, and legislative parameters. Such complex nonlinear processes are challenging to model, predict and optimize using conventional methods. Recently, artificial intelligence (AI) techniques have gained momentum in offering alternative computational approaches to solve solid waste management (SWM) problems. AI has been efficient at tackling ill-defined problems, learning from experience, and handling uncertainty and incomplete data. Although significant research was carried out in this domain, very few review studies have assessed the potential of AI in solving the diverse SWM problems. This systematic literature review compiled 85 research studies, published between 2004 and 2019, analyzing the application of AI in various SWM fields, including forecasting of waste characteristics, waste bin level detection, process parameters prediction, vehicle routing, and SWM planning. This review provides comprehensive analysis of the different AI models and techniques applied in SWM, application domains and reported performance parameters, as well as the software platforms used to implement such models. The challenges and insights of applying AI techniques in SWM are also discussed.


Subject(s)
Solid Waste , Waste Management , Artificial Intelligence , Forecasting , Software
5.
Springerplus ; 5(1): 827, 2016.
Article in English | MEDLINE | ID: mdl-27386276

ABSTRACT

Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.

SELECTION OF CITATIONS
SEARCH DETAIL
...