Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731797

ABSTRACT

Adipocyte P2 (aP2), also known as FABP4, is an adipokine that adipose tissue produces and expresses in macrophages. Its primary role is to facilitate the transportation of fatty acids across cell membranes. Numerous studies have reported associations between FABP4 and the development of metabolic disorders. However, there is limited knowledge regarding FABP4 expression in diabetes and obesity, especially about different age groups, genders, and ethnicities. This study aims to investigate the association between FABP4 levels, diabetes mellitus, and obesity within various ethnic groups. We measured plasma FABP4 concentrations in a cohort of 2083 patients from the KDEP study and gathered anthropometric data. Additionally, we collected and analyzed clinical, biochemical, and glycemic markers using multivariate regression analysis. The average FABP4 concentration was significantly higher in female participants than in males (18.8 ng/mL vs. 14.4 ng/mL, p < 0.001, respectively), and in those over 50 years old compared to those under 50 years of age (19.3 ng/mL vs. 16.2 ng/mL, p < 0.001, respectively). In this study, significant positive associations were found between the plasma level of FABP4 and obesity markers: BMI (r = 0.496, p < 0.001), hip circumference (r = 0.463, p < 0.001), and waist circumference (WC) (r = 0.436, p < 0.001). Similar observations were also seen with glycemic markers, which included HbA1c (r = 0.126, p < 0.001), fasting blood glucose (FBG) (r = 0.184, p < 0.001), fasting insulin (r = 0.326, p < 0.001), and HOMA-IR (r = 0.333, p < 0.001). Importantly, these associations remained significant even after adjusting for age, gender, and ethnicity. Furthermore, FABP4 levels were negatively associated with male gender (ß: -3.85, 95% CI: -4.92, -2.77, p < 0.001), and positively associated with age (ß: 0.14, 95% CI: 0.096, 0.183, p < 0.001), BMI (ß: 0.74, 95% CI: 0.644, 0.836, p < 0.001), and fasting insulin (ß: 0.115, 95% CI: 0.091, 0.138, p < 0.001). In this study, plasma FABP4 levels were significantly higher in diabetic and obese participants, and they were strongly influenced by age, gender, and ethnicity. These findings suggest that FABP4 may serve as a valuable prognostic and diagnostic marker for obesity and diabetes, particularly among female patients, individuals over 50 years old, and specific ethnic groups.


Subject(s)
Fatty Acid-Binding Proteins , Obesity , Humans , Fatty Acid-Binding Proteins/blood , Fatty Acid-Binding Proteins/metabolism , Male , Female , Middle Aged , Obesity/blood , Obesity/metabolism , Adult , Cohort Studies , Age Factors , Aged , Ethnicity , Body Mass Index , Biomarkers/blood , Diabetes Mellitus/blood , Diabetes Mellitus/metabolism , Blood Glucose/metabolism
2.
Front Endocrinol (Lausanne) ; 15: 1364503, 2024.
Article in English | MEDLINE | ID: mdl-38715796

ABSTRACT

Obesity has become a global epidemic in the modern world, significantly impacting the global healthcare economy. Lifestyle interventions remain the primary approach to managing obesity, with medical therapy considered a secondary option, often used in conjunction with lifestyle modifications. In recent years, there has been a proliferation of newer therapeutic agents, revolutionizing the treatment landscape for obesity. Notably, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, liraglutide, and the recently approved dual GLP-1/GIP RAs agonist tirzepatide, have emerged as effective medications for managing obesity, resulting in significant weight loss. These agents not only promote weight reduction but also improve metabolic parameters, including lipid profiles, glucose levels, and central adiposity. On the other hand, bariatric surgery has demonstrated superior efficacy in achieving weight reduction and addressing overall metabolic imbalances. However, with ongoing technological advancements, there is an ongoing debate regarding whether personalized medicine, targeting specific components, will shape the future of developing novel therapeutic agents for obesity management.


Subject(s)
Anti-Obesity Agents , Bariatric Surgery , Obesity Management , Obesity , Humans , Obesity/therapy , Bariatric Surgery/methods , Obesity Management/methods , Anti-Obesity Agents/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Weight Loss
3.
Front Endocrinol (Lausanne) ; 15: 1392675, 2024.
Article in English | MEDLINE | ID: mdl-38711986

ABSTRACT

Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.


Subject(s)
Adaptor Proteins, Signal Transducing , Diabetes Mellitus, Type 2 , Obesity , Humans , Male , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/epidemiology , Female , Kuwait/epidemiology , Middle Aged , Cross-Sectional Studies , Obesity/blood , Obesity/ethnology , Obesity/epidemiology , Adaptor Proteins, Signal Transducing/blood , Genetic Markers , Adult , Aged , Ethnicity , Biomarkers/blood , Bone Morphogenetic Proteins/blood
4.
Med Princ Pract ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359814

ABSTRACT

AAim: Sodium-glucose co-transporter 2 (SGLT2) inhibitors have emerged as a vital part of management of type 2 diabetes, as they have been shown to have both cardiovascular and renal benefits along with an improved survival rate in several randomized clinical trials. We designed a retrospective cohort study to investigate the impact of SGLT2 inhibitors on mortality among type 2 diabetes patients. METHODS: Patients with type 2 diabetes who presented to the Dasman Diabetes Institute in Kuwait were followed from January 1st, 2015, until January 20th, 2023. To control for non-random allocation of SGLT2 inhibitors and measured confounders, we performed one-to-one propensity score matching and evaluated outcomes in the matched cohorts using a Cox proportional hazards model. The primary treatment variable was SGLT2 inhibitor use; time to mortality from any cause was used as the outcome of interest. RESULTS: 1551 patients were taking SGLT2 inhibitors, and 1687 patients were not. After propensity score matching, 845 patients were on SGLT2 inhibitors, and 845 patients were not. In post-matching analysis, all-cause mortality was higher among patients who did not take SGLT2 inhibitors compared to patients taking SGLT2 inhibitors (5.2% vs. 2.1%, p=0.0012). The hazard ratio of all-cause mortality in patients taking SGLT2 inhibitors was 0.42 (95% confidence interval [95% CI], 0.24-0.72). Additional adjustment of matching factors did not change the results. CONCLUSION: This observational study demonstrated substantial long-term reduction in mortality risk among patients with type 2 diabetes treated with SGLT2 inhibitors. This is irrespective of the stage of their renal diseases or GLP1 agonist.

6.
J Gene Med ; 26(2): e3674, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404150

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic renal disease progressing to end-stage renal disease. There is a pressing need for the identification of early ADPKD biomarkers to enable timely intervention and the development of effective therapeutic approaches. Here, we profiled human urinary extracellular vesicles small RNAs by small RNA sequencing in patients with ADPKD and compared their differential expression considering healthy control individuals to identify dysregulated small RNAs and analyze downstream interaction to gain insight about molecular pathophysiology. METHODS: This is a cross-sectional study where urine samples were collected from a total of 23 PKD1-ADPKD patients and 28 healthy individuals. Urinary extracellular vesicles were purified, and small RNA was isolated and sequenced. Differentially expressed Small RNA were identified and functional enrichment analysis of the critical miRNAs was performed to identify driver genes and affected pathways. RESULTS: miR-320b, miR-320c, miR-146a-5p, miR-199b-3p, miR-671-5p, miR-1246, miR-8485, miR-3656, has_piR_020497, has_piR_020496 and has_piR_016271 were significantly upregulated in ADPKD patient urine extracellular vesicles and miRNA-29c was significantly downregulated. Five 'driver' target genes (FBRS, EDC3, FMNL3, CTNNBIP1 and KMT2A) were identified. CONCLUSIONS: The findings of the present study make significant contributions to the understanding of ADPKD pathogenesis and to the identification of novel biomarkers and potential drug targets aimed at slowing disease progression in ADPKD.


Subject(s)
Extracellular Vesicles , MicroRNAs , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Cross-Sectional Studies , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Formins
7.
Am J Nephrol ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194940

ABSTRACT

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disease characterized by the accumulation of fluid-filled cysts in the kidneys, leading to renal volume enlargement and progressive kidney function impairment. Disease severity, though, may vary due to allelic and genetic heterogeneity. This study aimed to determine genotype-phenotype correlations between PKD1 truncating and non-truncating mutations and kidney function decline in ADPKD patients. METHODS: We established a single center retrospective cohort study in Kuwait where we followed every patient with a confirmed PKD1-ADPKD diagnosis clinically and genetically. Renal function tests were performed annually. We fitted generalized additive mixed effects models with random intercepts for each individual to analyze repeated measures of kidney function across mutation type. We then calculated survival time to kidney failure in a cox proportional hazards model. Models were adjusted for sex, age at visit and birth year. RESULTS: The study included 22 truncating and 20 non-truncating (42 total) patients followed for an average of 6.6 years (range: 1 to 12 years). Those with PKD1 truncating mutations had a more rapid rate of eGFR decline (-4.7 ml/min/1.73m2 per year; 95%CI -5.0, -4.4) compared to patients with PKD1 non-truncating mutations (-3.5 ml/min/1.73m2 per year; 95%CI -4.0, -3.1) (P for interaction < 0.001). Kaplan-Meier survival analysis of time to kidney failure showed that patients with PKD1 truncating mutations had a shorter renal survival time (median 51 years) compared to those with non-truncating mutations (median 56 years) (P for log-rank = 0.008). CONCLUSION: In longitudinal and survival analyses, patients with PKD1 truncating mutations showed a faster decline in kidney function compared to patients PKD1 non-truncating mutations. Early identification of patients with PKD1 truncating mutations can, at best, inform early clinical interventions or, at least, help suggest aggressive monitoring.

8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159461, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272177

ABSTRACT

ANGPTL8, expressed mainly in the liver and adipose tissue, regulates the activity of lipoprotein lipase (LPL) present in the extracellular space and triglyceride (TG) metabolism through its interaction with ANGPTL3 and ANGPTL4. Whether intracellular ANGPTL8 can also exert effects in tissues where it is expressed is uncertain. ANGPTL8 expression was low in preadipocytes and much increased during differentiation. To better understand the role of intracellular ANGPTL8 in adipocytes and assess whether it may play a role in adipocyte differentiation, we knocked down its expression in normal mouse subcutaneous preadipocytes. ANGPTL8 knockdown reduced adipocyte differentiation, cellular TG accumulation and also isoproterenol-stimulated lipolysis at day 7 of differentiation. RNA-Seq analysis of ANGPTL8 siRNA or control siRNA transfected SC preadipocytes on days 0, 2, 4 and 7 of differentiation showed that ANGPTL8 knockdown impeded the early (day 2) expression of adipogenic and insulin signaling genes, PPARγ, as well as genes related to extracellular matrix and NF-κB signaling. Insulin mediated Akt phosphorylation was reduced at an early stage during adipocyte differentiation. This study based on normal primary cells shows that ANGPTL8 has intracellular actions in addition to effects in the extracellular space, like modulating LPL activity. Preadipocyte ANGPTL8 expression modulates their differentiation possibly via changes in insulin signaling gene expression.


Subject(s)
Adipogenesis , Insulin , Mice , Animals , Cell Differentiation/genetics , Adipogenesis/genetics , Signal Transduction , RNA, Small Interfering , Angiopoietin-Like Protein 8
9.
Front Immunol ; 14: 1273476, 2023.
Article in English | MEDLINE | ID: mdl-38094298

ABSTRACT

Type 1 diabetes (T1D) incidence has increased globally over the last decades, alongside other autoimmune diseases. Early screening of individuals at risk of developing T1D is vital to facilitate appropriate interventions and improve patient outcomes. This is particularly important to avoid life-threatening diabetic ketoacidosis and hospitalization associated with T1D diagnosis. Additionally, considering that new therapies have been developed for T1D, screening the population and individuals at high risk would be of great benefit. However, adopting such screening approaches may not be feasible due to limitations, such as cost, adaptation of such programs, and sample processing. In this perspective, we explore and highlight the use of multiplexing chemiluminescent assays for T1D screening and emphasize on their advantages in detecting multiple autoantibodies simultaneously, maximizing efficiency, and minimizing sample volume requirements. These assays could be extremely valuable for pediatric populations and large-scale screening initiatives, providing a cost-efficient solution with increased diagnostic accuracy and deeper insights into T1D pathogenesis. Eventually, the adoption of such screening methods can help transform T1D diagnosis, especially in countries with high T1D prevalence, such as Kuwait, which will contribute to the development of novel therapeutic interventions, positively impacting the lives of those affected by T1D and other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Child , Humans , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/complications , Autoantibodies , Kuwait , Autoimmune Diseases/diagnosis , Autoimmune Diseases/complications
10.
Cells ; 12(21)2023 11 02.
Article in English | MEDLINE | ID: mdl-37947641

ABSTRACT

BACKGROUND: Angiopoietin-like protein 8 (ANGPTL8) is known to regulate lipid metabolism and inflammation. It interacts with ANGPTL3 and ANGPTL4 to regulate lipoprotein lipase (LPL) activity and with IKK to modulate NF-κB activity. Further, a single nucleotide polymorphism (SNP) leading to the ANGPTL8 R59W variant associates with reduced low-density lipoprotein/high-density lipoprotein (LDL/HDL) and increased fasting blood glucose (FBG) in Hispanic and Arab individuals, respectively. In this study, we investigate the impact of the R59W variant on the inflammatory activity of ANGPTL8. METHODS: The ANGPTL8 R59W variant was genotyped in a discovery cohort of 867 Arab individuals from Kuwait. Plasma levels of ANGPTL8 and inflammatory markers were measured and tested for associations with the genotype; the associations were tested for replication in an independent cohort of 278 Arab individuals. Impact of the ANGPTL8 R59W variant on NF-κB activity was examined using approaches including overexpression, luciferase assay, and structural modeling of binding dynamics. RESULTS: The ANGPTL8 R59W variant was associated with increased circulatory levels of tumor necrosis factor alpha (TNFα) and interleukin 7 (IL7). Our in vitro studies using HepG2 cells revealed an increased phosphorylation of key inflammatory proteins of the NF-κB pathway in individuals with the R59W variant as compared to those with the wild type, and TNFα stimulation further elevated it. This finding was substantiated by increased luciferase activity of NF-κB p65 with the R59W variant. Modeled structural and binding variation due to R59W change in ANGPTL8 agreed with the observed increase in NF-κB activity. CONCLUSION: ANGPTL8 R59W is associated with increased circulatory TNFα, IL7, and NF-κB p65 activity. Weak transient binding of the ANGPTL8 R59W variant explains its regulatory role on the NF-κB pathway and inflammation.


Subject(s)
Angiopoietin-Like Protein 8 , Peptide Hormones , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , Angiopoietin-like Proteins/genetics , Angiopoietin-like Proteins/metabolism , Interleukin-7 , Inflammation/genetics , Signal Transduction , Luciferases/metabolism , Angiopoietin-Like Protein 3 , Peptide Hormones/genetics , Peptide Hormones/metabolism
11.
Front Endocrinol (Lausanne) ; 14: 1257051, 2023.
Article in English | MEDLINE | ID: mdl-37929021

ABSTRACT

Vitamin D deficiency (VDD) is widespread in the Arab world despite ample sunshine throughout the year. In our previous study, lifestyle and socio-demographic factors could explain only 45% of variability in vitamin D levels in Kuwaiti adolescents, suggesting that genetics might contribute to VDD in this region. Single nucleotide polymorphisms (SNP) in the 25-hydroxylase (CYP2R1) and the GC globulin (GC) genes have been reported to affect vitamin D levels in various ethnic groups in adults. In this study, we investigated the association of two SNPs from GC (rs4588 and rs7041) and three SNPs from CYP2R1 (rs10741657, rs11023374 and rs12794714) with vitamin D levels and VDD in a nationally representative sample of adolescents of Arab ethnicity from Kuwait. Multivariable linear regression, corrected for age, sex, parental education, governorate, body mass index, and exposure to sun, demonstrated that each of the 5 study variants showed significant associations with plasma 25(OH)D levels in one or more of the additive, recessive, and dominant genetic models - the rs10741657 under all the three models, rs12794714 under both the additive and recessive models, rs7041 under the recessive model; and rs4588 and rs11023374 under the dominant model. Minor alleles at rs4588 (T), rs7041 (A), rs11023374 (C), and rs12794714 (A) led to a decrease in plasma 25(OH)D levels - rs4588:[ß (95%CI) = -4.522 (-8.66,-0.38); p=0.033]; rs7041:[ß (95%CI) = -6.139 (-11.12,-1.15); p=0.016]; rs11023374:[ß (95%CI) = -4.296 (-8.18,-0.40); p=0.031]; and rs12794714:[ß (95%CI) = -3.498 (-6.27,-0.72); p=0.014]. Minor allele A at rs10741657 was associated with higher levels of plasma 25(OH)D levels [ß (95%CI) = 4.844 (1.62,8.06); p=0.003)] and lower odds of vitamin D deficiency (OR 0.40; p=0.002). These results suggest that the CYP2R1 and GC SNP variants are partly responsible for the high prevalence of VDD in Kuwait. Genotyping these variants may be considered for the prognosis of VDD in Kuwait.


Subject(s)
Cholestanetriol 26-Monooxygenase , Cytochrome P450 Family 2 , Vitamin D Deficiency , Vitamin D-Binding Protein , Vitamin D , Adolescent , Humans , Arabs/genetics , Cholestanetriol 26-Monooxygenase/genetics , Ethnicity , Kuwait/epidemiology , Mixed Function Oxygenases/genetics , Polymorphism, Single Nucleotide , Vitamin D Deficiency/epidemiology , Vitamin D Deficiency/genetics , Vitamin D-Binding Protein/genetics , Vitamins , Cytochrome P450 Family 2/genetics
12.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894865

ABSTRACT

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Subject(s)
NF-kappa B , Tumor Necrosis Factor-alpha , Humans , Endoplasmic Reticulum Stress , Glucose , Inflammation , NF-kappa B/metabolism , Obesity , Reactive Oxygen Species/metabolism , THP-1 Cells , Tumor Necrosis Factor-alpha/metabolism
13.
Front Endocrinol (Lausanne) ; 14: 1185956, 2023.
Article in English | MEDLINE | ID: mdl-37859980

ABSTRACT

The Wolfram syndrome 1 gene (WFS1) is the main causative locus for Wolfram syndrome, an inherited condition characterized by childhood-onset diabetes mellitus, optic atrophy, and deafness. Global genome-wide association studies have listed at least 19 WFS1 variants that are associated with type 2 diabetes (T2D) and metabolic traits. It has been suggested that miRNA binding sites on WFS1 play a critical role in the regulation of the wolframin protein, and loss of WFS1 function may lead to the pathogenesis of diabetes. In the Hungarian population, it was observed that a 3' UTR variant from WFS1, namely rs1046322, influenced the affinity of miR-668 to WFS1 mRNA, and showed a strong association with T2D. In this study, we genotyped a large cohort of 2067 individuals of different ethnicities residing in Kuwait for the WFS1 rs1046322 polymorphism. The cohort included 362 Southeast Asians (SEA), 1045 Arabs, and 660 South Asians (SA). Upon performing genetic association tests, we observed significant associations between the rs1046322 SNP and obesity traits in the SEA population, but not in the Arab or SA populations. The associated traits in SEA cohort were body mass index, BMI (ß=1.562, P-value=0.0035, Pemp=0.0072), waist circumference, WC (ß=3.163, P-value=0.0197, Pemp=0.0388) and triglyceride, TGL (ß=0.224, P-value=0.0340). The association with BMI remained statistically significant even after multiple testing correction. Among the SEA individuals, carriers of the effect allele at the SNP had significantly higher BMI [mean of 27.63 (3.6) Kg/m2], WC [mean of 89.9 (8.1) cm], and TGL levels [mean of 1.672 (0.8) mmol/l] than non-carriers of the effect allele. Our findings suggest a role for WFS1 in obesity, which is a risk factor for diabetes. The study also emphasizes the significant role the ethnic background may play in determining the effect of genetic variants on susceptibility to metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Obesity , Wolfram Syndrome , Child , Humans , Binding Sites/genetics , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , MicroRNAs/genetics , Obesity/epidemiology , Obesity/genetics , Southeast Asian People , Wolfram Syndrome/epidemiology , Wolfram Syndrome/genetics
14.
Int J Mol Sci ; 24(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37762544

ABSTRACT

Diabetic nephropathy (DN) is a complicated condition related to type 2 diabetes mellitus (T2D). ANGPTL8 is a hepatic protein highlighted as a risk factor for DN in patients with T2D; additionally, recent evidence from DN studies supports the involvement of growth hormone/IGF/IGF-binding protein axis constituents. The potential link between ANGPTL8 and IGFBPs in DN has not been explored before. Here, we assessed changes in the circulating ANGPTL8 levels in patients with DN and its association with IGFBP-1, -3, and -4. Our data revealed a significant rise in circulating ANGPTL8 in people with DN, 4443.35 ± 396 ng/mL compared to 2059.73 ± 216 ng/mL in people with T2D (p < 0.001). Similarly, levels of IGFBP-3 and -4 were significantly higher in people with DN compared to the T2D group. Interestingly, the rise in ANGPTL8 levels correlated positively with IGFBP-4 levels in T2DM patients with DN (p < 0.001) and this significant correlation disappeared in T2DM patients without DN. It also correlated positively with serum creatinine and negatively with the estimated glomerular filtration rate (eGFR, All < 0.05). The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and IGFBP4 was 0.76 (0.69-0.84), p < 0.001, and the specificity was 85.9%. In conclusion, our results showed a significant increase in ANGPTL8 in patients with DN that correlated exclusively with IGFBP-4, implicating a potential role of both proteins in the pathophysiology of DN. Our findings highlight the significance of these biomarkers, suggesting them as promising diagnostic molecules for the detection of diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Peptide Hormones , Humans , Angiopoietin-Like Protein 8 , Area Under Curve , Diabetes Mellitus, Type 2/complications , Insulin-Like Growth Factor Binding Protein 4 , ROC Curve
15.
Metabolites ; 13(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37755252

ABSTRACT

ANGPTL8 is recognized as a regulator of lipid metabolism through its role in inhibiting lipoprotein lipase activity. ANGPTL8 gene variants, particularly rs2278426 leading to the R59W variant in the protein, have been associated with lipid traits in various ethnicities. We aimed to use metabolomics to understand the impact of the ANGPTL8 R59W variant on metabolites in humans. We used the Biocrates-p400 kit to quantify 408 plasma metabolites in 60 adult male Arab individuals from Kuwait and identify differences in metabolite levels between individuals carrying reference genotypes and those with carrier genotypes at ANGPTL8 rs2278426. Individuals with carrier genotypes (CT+TT) compared to those carrying the reference genotype (CC) showed statistically significant differences in the following metabolites: acylcarnitine (perturbs metabolic pathways), phosphatidylcholine (supports liver function and cholesterol levels), cholesteryl ester (brings chronic inflammatory response to lipoprotein depositions in arteries), α-aminoadipic acid (modulates glucose homeostasis), histamine (regulates glucose/lipid metabolism), sarcosine (links amino acid and lipid metabolism), diacylglycerol 42:1 (regulates homeostasis of cellular lipid stores), and lysophosphatidylcholine (regulates oxidative stress and inflammatory response). Functional aspects attributed to these metabolites indicate that the ANGPTL8 R59W variant influences the concentrations of lipid- and inflammation-related metabolites. This observation further highlights the role of ANGPTL8 in lipid metabolism.

16.
Nutrients ; 15(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513518

ABSTRACT

Leucine-rich α-2 glycoprotein1 (LRG1) has been shown to be associated with several health conditions; however, its association with iron deficiency anemia, especially in children, has not been previously explored. In this study, we investigated the association between LRG1 and several iron deficiency anemia markers, including hemoglobin (Hb), albumin, red cell distribution width (RDW), iron, ferritin, and Hb transferrin saturation. A total of 431 participants were included in this analysis aged between 11 and 14 years. Higher LRG1 levels were observed in children diagnosed with anemia [31.1 (24.6, 43.2) µg/mL] compared to non-anemic children [29.2 (22.7-35.95) µg/mL]. Statistically significant differences of LRG1 level across the three groups (tertiles) of Hb, iron, transferrin saturation, albumin, RDW, ferritin, and WBC were observed. Strong negative correlations were observed between LRG1 and Hb (Spearman's rho = -0.11, p = 0.021), albumin (Spearman's rho = -0.24, p < 0.001), iron (Spearman's rho = -0.25, p < 0.001), and Hb transferrin saturation (Spearman's rho = -0.24, p < 0.001), whereas circulating LRG1 levels were positively associated with RDW (Spearman's rho = 0.21, p < 0.001). In conclusion, our findings demonstrate for the first time the strong association between iron deficiency anemia markers and LRG1 in otherwise healthy school-aged children. However, further studies are needed to corroborate those results and to look for similar associations in other population subgroups.


Subject(s)
Anemia, Iron-Deficiency , Child , Humans , Adolescent , Anemia, Iron-Deficiency/epidemiology , Leucine , Iron , Hemoglobins/analysis , Ferritins , Transferrin/analysis , Biomarkers , Albumins , Glycoproteins
17.
Interdiscip Sci ; 15(3): 452-464, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37389721

ABSTRACT

Diabetes mellitus significantly contributes to breast cancer progression, where hyperglycemia upregulates specific genes, leading to more aggressive tumor growth. In patients with BC that develop diabetes, neuregulin 1 (NRG1) and epidermal growth factor receptor 3 (ERBB3) overexpression exacerbate tumor growth and progression. Since the interaction between NRG1 and ERBB3 is critical for tumor growth, understanding the molecular mechanisms underlying NRG1-ERBB3 complex formation is essential for elucidating diabetes-assisted breast cancer progression. However, the key residues forming the NRG1-ERBB3 complex remain unknown. Here, we substituted specific residues in NRG1 with alanine and studied its interactions with ERBB3 using computational structural biology tools. We further screened the South African natural compounds database to target the complex's interface residues to discover potential inhibitors. The conformational stability and dynamic features of NRG1-WT, -H2A, -L3A, and -K35A complexed with ERBB3 were subjected to 400 ns molecular dynamics simulations. The free binding energies of all NRG1-ERBB3 complexes were calculated using the molecular mechanics-generalized Born surface area (MM/GBSA). The H2 and L3 alanine substitutions caused a loss of interaction with ERBB3 residue D73, weakening the interaction with ERBB3. Screening 1300 natural compounds identified four (SANC00643, SANC00824, SANC00975, and SANC00335) with the best potential to inhibit ERRB3-NRG1 coupling. The binding free energies for each complex were - 48.55 kcal/mol for SANC00643, - 47.68 kcal/mol for SANC00824, - 46.04 kcal/mol for SANC00975, and - 45.29 kcal/mol for SANC00335, showing their overall stronger binding with ERBB3 than NRG1 and their potential to act as ERBB3-NRG1 complex inhibitors. In conclusion, this complex may represent a residue-specific drug target to inhibit BC progression.


Subject(s)
Breast Neoplasms , Diabetes Mellitus , Humans , Female , Breast Neoplasms/drug therapy , Neuregulin-1/genetics , Neuregulin-1/metabolism , Neuregulin-1/pharmacology , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
19.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047780

ABSTRACT

Obstructive sleep apnoea (OSA) is a prevalent underdiagnosed disorder whose incidence increases with age and weight. Uniquely characterised by frequent breathing interruptions during sleep-known as intermittent hypoxia (IH)-OSA disrupts the circadian rhythm. Patients with OSA have repeated episodes of hypoxia and reoxygenation, leading to systemic consequences. OSA consequences range from apparent symptoms like excessive daytime sleepiness, neurocognitive deterioration and decreased quality of life to pathological complications characterised by elevated biomarkers linked to endocrine-metabolic and cardiovascular changes. OSA is a well-recognized risk factor for cardiovascular and cerebrovascular diseases. Furthermore, OSA is linked to other conditions that worsen cardiovascular outcomes, such as obesity. The relationship between OSA and obesity is complex and reciprocal, involving interaction between biological and lifestyle factors. The pathogenesis of both OSA and obesity involve oxidative stress, inflammation and metabolic dysregulation. The current medical practice uses continuous positive airway pressure (CPAP) as the gold standard tool to manage OSA. It has been shown to improve symptoms and cardiac function, reduce cardiovascular risk and normalise biomarkers. Nonetheless, a full understanding of the factors involved in the deleterious effects of OSA and the best methods to eliminate their occurrence are still poorly understood. In this review, we present the factors and evidence linking OSA to increased risk of cardiovascular conditions.


Subject(s)
Cardiovascular Diseases , Metabolic Diseases , Sleep Apnea, Obstructive , Humans , Quality of Life , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Obesity/complications , Obesity/metabolism , Cardiovascular Diseases/complications , Inflammation/complications , Metabolic Diseases/complications , Hypoxia/complications
20.
Diabetes Care ; 46(5): 978-984, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36857415

ABSTRACT

OBJECTIVE: To examine the mechanisms responsible for the increase in glucose and ketone production caused by empagliflozin in patients with type 2 diabetes mellitus (T2DM). RESEARCH DESIGN AND METHODS: Twelve subjects with T2DM participated in two studies performed in random order. In study 1, endogenous glucose production (EGP) was measured with 8-h infusion of 6,6,D2-glucose. Three hours after the start of 6,6,D2-glucose infusion, subjects ingested 25 mg empagliflozin (n = 8) or placebo (n = 4), and norepinephrine (NE) turnover was measured before and after empagliflozin ingestion with 3H-NE infusion. Study 2 was similar to study 1 but performed under pancreatic clamp conditions. RESULTS: When empagliflozin was ingested under fasting conditions, EGP increased by 31% in association with a decrease in plasma glucose (-34 mg/dL) and insulin (-52%) concentrations and increases in plasma glucagon (+19%), free fatty acid (FFA) (+29%), and ß-hydroxybutyrate (+48%) concentrations. When empagliflozin was ingested under pancreatic clamp conditions, plasma insulin and glucagon concentrations remained unchanged, and the increase in plasma FFA and ketone concentrations was completely blocked, while the increase in EGP persisted. Total-body NE turnover rate was greater in subjects receiving empagliflozin (+67%) compared with placebo under both fasting and pancreatic clamp conditions. No difference in plasma NE concentration was observed in either study. CONCLUSIONS: The decrease in plasma insulin and increase in plasma glucagon concentration caused by empagliflozin is responsible for the increase in plasma FFA concentration and ketone production. The increase in EGP caused by empagliflozin is independent of the change in plasma insulin or glucagon concentrations and is likely explained by the increase in NE turnover.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Glucose/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucagon , Insulin/therapeutic use , Ketones/therapeutic use , Norepinephrine/therapeutic use , Blood Glucose , Fatty Acids, Nonesterified
SELECTION OF CITATIONS
SEARCH DETAIL
...