Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(5)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37754143

ABSTRACT

High-strength grout is specified to increase the bond between grout and bar in grouted connections and to ensure that the forces in the bars can be transferred to the surrounding material accordingly. Although polymer grout is fast setting and rapid in strength development, the use of polymer mortar in grouted connections is still limited because of the lack of information and familiarity practitioners have regarding the product. The goal of this work is to investigate the mechanical characteristics and performance of polyester grout containing fly ash that can be used as an infill material for grouted connections. This study focused on the composition of polymer grout, which typically consists of a binder, hardener, and filler. In this particular case, the binder was made of unsaturated polyester resin and hardener, while the filler was fine sand. The aim of the research was to investigate the potential benefits of incorporating fly ash as an additional filler in polymer resin grout and examine the mechanical properties of polymer resin grout. To this end, varying amounts of fly ash were added to the mix, ranging from 0% to 32% of the total filler by volume, with a fixed polymer content of 40%. The performance of the resulting grout was evaluated through flowability, compression, and splitting tensile tests. The results of the experiments showed that, at a fly ash volume of 28%, the combination of fine sand and fly ash led to an improvement in grout strength; specifically, at this volume of fly ash, the compressive and tensile strengths increased by 24.7% and 124%, respectively, compared to the control mix. However, beyond a fly ash volume of 28%, the mechanical properties of the grout started to deteriorate. Due its superior properties in terms of compressive and flexural strengths over all examined mixes, the PRG-40-28 mix is ideal for use in the infill material for mechanical connections.

2.
Materials (Basel) ; 15(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35591399

ABSTRACT

Utilizing solid wastes and industrial by-products as a partial replacement for raw materials has become an acceptable practice among researchers and scientists in the civil engineering field. Sawdust and wood shavings are not an exception; they are being used in concrete as a partial or total replacement for some of its constituents. The main goal of this research is to establish a relation between destructive and non-destructive testing for concrete containing wood shavings as a partial replacement of sand (woodcrete). With this type of material existing, thus the need to understand the behavior of such material becomes urgent and evokes the need to ease the process of the assessment and the evaluation of such materials and therefore provide more understanding of its behavior. In addition to the conventional concrete mix, five mixes of woodcrete were made by replacing fine aggregate by volume with wood shavings at different replacement levels varied from 5% to 50%. Cubic samples were tested at the age of 90 days using nondestructive tests (NDT), namely, rebound hammer test and ultrasonic pulse velocity test. Then, the specimens were tested using a conventional compressive test using a universal compression testing machine. Statistical analysis was performed to establish empirical relations between destructive and non-destructive results. The dynamic modulus of elasticity was calculated, and some formulas to estimate the (compressive) strength of woodcrete using NDT results were proposed and tested against experimental results and showed acceptable results.

SELECTION OF CITATIONS
SEARCH DETAIL
...