Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 91(6): 852-8, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21403643

ABSTRACT

Tenofovir disoproxil fumarate (TDF) is an oral prodrug and acyclic nucleotide analog of adenosine monophosphate that inhibits HIV-1 (HIV) reverse transcriptase. A growing subset of TDF-treated HIV(+) individuals presented with acute renal failure, suggesting tenofovir-associated kidney-specific toxicity. Our previous studies using an HIV transgenic mouse model (TG) demonstrated specific changes in renal proximal tubular mitochondrial DNA (mtDNA) abundance. Nucleosides are regulated in biological systems via transport and metabolism in cellular compartments. In this study, the role(s) of organic anion transporter type 1 (OAT1) and multidrug-resistant protein type 4 (MRP4) in transport and regulation of tenofovir in proximal tubules were assessed. Renal toxicity was assessed in kidney tissues from OAT1 knockout (KO) or MRP4 KO compared with wild-type (WT, C57BL/6) mice following treatment with TDF (0.11 mg/day), didanosine (ddI, a related adenosine analog, 0.14 mg/day) or vehicle (0.1 M NaOH) daily gavage for 5 weeks. Laser-capture microdissection (LCM) was used to isolate renal proximal tubules for molecular analyses. mtDNA abundance and ultrastructural pathology were analyzed. mtDNA abundance in whole kidneys from both KO and WT was unchanged regardless of treatment. Renal proximal tubular mtDNA abundance from OAT1 KO also remained unchanged, suggesting prevention of TDF toxicity due to loss of tenofovir transport into proximal tubules. In contrast, renal proximal tubules from MRP4 KO exhibited increased mtDNA abundance following TDF treatment compared with WT littermates, suggesting compensation. Renal proximal tubules from TDF-treated WT and MRP4 KO exhibited increased numbers of irregular mitochondria with sparse, fragmented cristae compared with OAT1 KO. Treatment with ddI had a compensatory effect on mtDNA abundance in OAT1 KO but not in MRP4 KO. Both OAT1 and MRP4 have a direct role in transport and efflux of tenofovir, regulating levels of tenofovir in proximal tubules. Disruption of OAT1 activity prevents tenofovir toxicity but loss of MRP4 can lead to increased renal proximal tubular toxicity. These data help to explain mechanisms of human TDF renal toxicity.


Subject(s)
Adenine/analogs & derivatives , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transport Protein 1/metabolism , Organophosphonates/toxicity , Adenine/administration & dosage , Adenine/toxicity , Analysis of Variance , Animals , DNA, Mitochondrial/metabolism , Kidney Tubules, Proximal/pathology , Lasers , Mice , Mice, Inbred C57BL , Mice, Knockout , Microdissection , Mitochondria/pathology , Multidrug Resistance-Associated Proteins/genetics , Organic Anion Transport Protein 1/genetics , Organophosphonates/administration & dosage , Reverse Transcriptase Polymerase Chain Reaction , Tenofovir
2.
Cardiovasc Toxicol ; 10(2): 146-51, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20379802

ABSTRACT

Abacavir (ABC) is a guanosine nucleoside reverse transcriptase inhibitor (NRTI) with potent antiretroviral activity. Since NRTIs exhibit tissue-specific inhibition of mitochondrial DNA (mtDNA) synthesis, the ability of ABC to inhibit mtDNA synthesis in vivo was evaluated. Inbred wild-type (WT) and transgenic mice (TG) treated with ABC (3.125 mg/d p. o., 35 days) were used to define mitochondrial oxidative stress and cardiac function. Chosen TGs exhibited overexpression of HIV-1 viral proteins (NL4-3Deltagag/pol, non-replication competent), hemizygous depletion or overexpression of mitochondrial superoxide dismutase (SOD2(+/-) knock-out (KO) or MnSOD OX, respectively), overexpression of mitochondrially targeted catalase (MCAT), or double "knockout" deletion of aldehyde dehydrogenase activity (ALDH2 KO). Impact on mtDNA synthesis was assessed by comparing changes in mtDNA abundance between ABC-treated and vehicle-treated WTs and TGs. No changes in mtDNA abundance occurred from ABC treatment in any mice, suggesting no inhibition of mtDNA synthesis. Left ventricle (LV) mass and LV end-diastolic dimension (LVEDD) were defined echocardiographically and remained unchanged as well. These results indicate that treatment with ABC has no visible cardiotoxicity in these adult mice exposed for 5 weeks compared to findings with other antiretroviral NRTI studies and support some claims for its relative safety.


Subject(s)
Anti-HIV Agents/toxicity , Dideoxynucleosides/toxicity , Heart Diseases/chemically induced , Heart/drug effects , Mitochondria, Heart/drug effects , Animals , DNA, Mitochondrial/biosynthesis , Echocardiography , Heart Diseases/physiopathology , Heart Ventricles/drug effects , Heart Ventricles/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mitochondria, Heart/enzymology , Mitochondria, Heart/genetics , Oxidative Stress/drug effects , Superoxide Dismutase
3.
Lab Invest ; 90(3): 383-90, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20065942

ABSTRACT

Thymidylate kinase (TMPK) is a nucleoside monophosphate kinase that catalyzes phosphorylation of thymidine monophosphate to thymidine diphosphate. TMPK also mediates phosphorylation of monophosphates of thymidine nucleoside analog (NA) prodrugs on the pathway to their active triphosphate antiviral or antitumor moieties. Novel transgenic mice (TG) expressing human (h) TMPK were genetically engineered using the alpha-myosin heavy chain promoter to drive its cardiac-targeted overexpression. In '2 by 2' protocols, TMPK TGs and wild-type (WT) littermates were treated with the NA zidovudine (a deoxythymidine analog, 3'-azido-3'deoxythymidine (AZT)) or vehicle for 35 days. Alternatively, TGs and WTs were treated with a deoxycytidine NA (racivir, RCV) or vehicle. Changes in mitochondrial DNA (mtDNA) abundance and mitochondrial ultrastructure were defined quantitatively by real-time PCR and transmission electron microscopy, respectively. Cardiac performance was determined echocardiographically. Results showed TMPK TGs treated with either AZT or RCV exhibited decreased cardiac mtDNA abundance. Cardiac ultrastructural changes were seen only with AZT. AZT-treated TGs exhibited increased left ventricle (LV) mass. In contrast, LV mass in RCV-treated TGs and WTs remained unchanged. In all cohorts, LV end-diastolic dimension remained unchanged. This novel cardiac-targeted overexpression of hTMPK helps define the role of TMPK in mitochondrial toxicity of antiretrovirals.


Subject(s)
Anti-HIV Agents/toxicity , DNA, Mitochondrial/metabolism , Myocardium/metabolism , Nucleoside-Phosphate Kinase/metabolism , Nucleosides/metabolism , Zalcitabine/analogs & derivatives , Zidovudine/toxicity , Animals , Anti-HIV Agents/metabolism , DNA Replication/drug effects , DNA, Mitochondrial/drug effects , Echocardiography , Emtricitabine/analogs & derivatives , Female , Humans , Hypertrophy, Left Ventricular/chemically induced , Hypertrophy, Left Ventricular/diagnostic imaging , Male , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocardium/pathology , Myocardium/ultrastructure , Nucleoside-Phosphate Kinase/genetics , Phosphorylation , Ventricular Function, Left , Zalcitabine/metabolism , Zalcitabine/toxicity , Zidovudine/metabolism
4.
Lab Invest ; 89(7): 782-90, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19398959

ABSTRACT

Transgenic mice (TG) were used to define mitochondrial oxidative stress and cardiomyopathy (CM) induced by zidovudine (AZT), an antiretroviral used to treat HIV/AIDS. Genetically engineered mice either depleted or overexpressed mitochondrial superoxide dismutase (SOD2(+/-) KOs and SOD2-OX, respectively) or expressed mitochondrially targeted catalase (mCAT). TGs and wild-type (WT) littermates were treated (oral AZT, 35 days). Cardiac mitochondrial H(2)O(2), aconitase activity, histology and ultrastructure were analyzed. Left ventricle (LV) mass and LV end-diastolic dimension were determined echocardiographically. AZT induced cardiac oxidative stress and LV dysfunction in WTs. Cardiac mitochondrial H(2)O(2) increased and aconitase was inactivated in SOD2(+/-) KOs, and cardiac dysfunction was worsened by AZT. Conversely, the cardiac function in SOD2-OX and mCAT hearts was protected. In SOD2-OX and mCAT TG hearts, mitochondrial H(2)O(2), LV mass and LV cavity volume resembled corresponding values from vehicle-treated WTs. AZT worsens cardiac dysfunction and increases mitochondrial H(2)O(2) in SOD2(+/-) KO. Conversely, both SOD2-OX and mCAT TGs prevent or attenuate AZT-induced cardiac oxidative stress and LV dysfunction. As dysfunctional changes are ameliorated by decreasing and worsened by increasing H(2)O(2) abundance, oxidative stress from H(2)O(2) is crucial pathogenetically in AZT-induced mitochondrial CM.


Subject(s)
Anti-HIV Agents/toxicity , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , Catalase/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/enzymology , Superoxide Dismutase/metabolism , Zidovudine/toxicity , Aconitate Hydratase/metabolism , Animals , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Catalase/genetics , Female , Gene Expression , Hydrogen Peroxide/metabolism , Male , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria, Heart/ultrastructure , Models, Cardiovascular , Myocardium/pathology , Oxidative Stress/drug effects , Phenotype , Superoxide Dismutase/deficiency , Superoxide Dismutase/genetics
5.
Cardiovasc Toxicol ; 8(2): 57-69, 2008.
Article in English | MEDLINE | ID: mdl-18446447

ABSTRACT

Mitochondrial (mt) DNA biogenesis is critical to cardiac contractility. DNA polymerase gamma (Pol gamma) replicates mtDNA, whereas thymidine kinase 2 (TK2) monophosphorylates pyrimidines intramitochondrially. Point mutations in POLG and TK2 result in clinical diseases associated with mtDNA depletion and organ dysfunction. Pyrimidine analogs (NRTIs) inhibit Pol gamma and mtDNA replication. Cardiac "dominant negative" murine transgenes (TGs; Pol gamma Y955C, and TK2 H121N or I212N) defined the role of each in the heart. mtDNA abundance, histopathological features, histochemistry, mitochondrial protein abundance, morphometry, and echocardiography were determined for TGs in "2 x 2" studies with or without pyrimidine analogs. Cardiac mtDNA abundance decreased in Y955C TGs ( approximately 50%) but increased in H121N and I212N TGs (20-70%). Succinate dehydrogenase (SDH) increased in hearts of all mutants. Ultrastructural changes occurred in Y955C and H121N TGs. Histopathology demonstrated hypertrophy in H121N, LV dilation in I212N, and both hypertrophy and dilation in Y955C TGs. Antiretrovirals increased LV mass ( approximately 50%) for all three TGs which combined with dilation indicates cardiomyopathy. Taken together, these studies demonstrate three manifestations of cardiac dysfunction that depend on the nature of the specific mutation and antiretroviral treatment. Mutations in genes for mtDNA biogenesis increase risk for defective mtDNA replication, leading to LV hypertrophy.


Subject(s)
Anti-Retroviral Agents/toxicity , Cardiomyopathies/enzymology , DNA, Mitochondrial/metabolism , DNA-Directed DNA Polymerase/metabolism , Mitochondria, Heart/enzymology , Myocytes, Cardiac/enzymology , Thymidine Kinase/metabolism , Animals , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/etiology , Cardiomyopathy, Dilated/enzymology , Cardiomyopathy, Dilated/etiology , DNA Polymerase gamma , DNA-Directed DNA Polymerase/genetics , Electron Transport Complex I/metabolism , Humans , Hypertrophy, Left Ventricular/enzymology , Hypertrophy, Left Ventricular/etiology , Mice , Mice, Transgenic , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Point Mutation , Succinate Dehydrogenase/metabolism , Thymidine Kinase/genetics , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...