Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2702: 451-465, 2023.
Article in English | MEDLINE | ID: mdl-37679635

ABSTRACT

To develop reproducible results, it is critical that all reagents used in an experiment be validated in an alternative or independent method. We present two such independent methods for determining the specificity of antibodies: (1) "MILKSHAKE," which can be used to validate the liability and specificity of antibodies directed against post-translationally-modified epitopes, and (2) "Sundae," which is a more complete alanine-like scanning method that can be used to better understand the binding and bioactivity of specific residues of a protein. We apply both of these methods to the interaction between an antibody and its antigen.


Subject(s)
Alanine , Antibodies , Epitopes
2.
Methods Mol Biol ; 2702: 587-601, 2023.
Article in English | MEDLINE | ID: mdl-37679640

ABSTRACT

Researchers can often successfully generate antibodies to predicted epitopes. Especially when the epitopes are on the surface of a protein or in a hydrophilic loop. But it is difficult to direct recombinant antibodies to bind either to- or near a specific amino acid on a protein or peptide. We have developed a unique immune-targeting strategy, that we call "Epivolve," that enables us to make site-specific antibodies (Abs). Epivolve technology leverages a highly immunogenic modified amino acid that acts as a "pseudo-hapten" immuno-target and takes advantage of Ab affinity maturation technologies to make high-affinity site-specific antibodies. Epivolve functions by the evolution of an Ab paratope to either synonymous or especially non-synonymous amino acid (aa) binding. Here we describe the use of Epivolve technology in phage display and the protocols for developing site-specific antibodies.


Subject(s)
Amino Acids , Antibodies , Binding Sites, Antibody , Cell Surface Display Techniques , Epitopes
3.
J Immunol Methods ; 417: 67-75, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25523926

ABSTRACT

The Eco29k I restriction endonuclease is a Sac II isoschizomer that recognizes the sequence 5'-CCGCGG-3' and is encoded, along with the Eco29k I methylase, in the Escherichia coli strain 29k. We have expressed the Eco29k I restriction-methylation system (RM2) in E. coli strain TG1 to produce the strain AXE688. We have developed a directed molecular evolution (DME) mutagenesis method that uses Eco29k I to restrict incoming parental DNA in transformed cells. Using our DME method, we have demonstrated that our AXE688 strain results in mutated directed molecular evolution libraries with diversity greater than 10(7) from a single transformation and with greater than 90% recombinant clones.


Subject(s)
DNA Modification Methylases/genetics , Deoxyribonucleases, Type II Site-Specific/genetics , Directed Molecular Evolution/methods , Escherichia coli/genetics , Mutagenesis, Site-Directed/methods , Cloning, Molecular , DNA Modification Methylases/biosynthesis , DNA, Recombinant/genetics , DNA, Recombinant/metabolism , Deoxyribonucleases, Type II Site-Specific/biosynthesis , Gene Library , Genetic Variation , Genetic Vectors/genetics
4.
J Immunol Methods ; 394(1-2): 55-61, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23680235

ABSTRACT

Affinity maturation is an important part of the recombinant antibody development process. There are several well-established approaches for generating libraries of mutated antibody genes for affinity maturation, but these approaches are generally too laborious or expensive to allow high-throughput, parallel processing of multiple antibodies. Here, we describe a scalable approach that enables the generation of libraries with greater than 10(8) clones from a single Escherichia coli transformation. In our method, a mutated DNA fragment is produced using PCR conditions that promote nucleotide misincorporation into newly synthesized DNA. In the PCR reaction, one of the primers contains at least three phosphorothioate linkages at its 5' end, and treatment of the PCR product with a 5' to 3' exonuclease is used to preferentially remove the strand synthesized with the non-modified primer, resulting in a single-stranded DNA fragment. This fragment then serves as a megaprimer to prime DNA synthesis on a uracilated, circular, single-stranded template in a Kunkel-like mutagenesis reaction that biases nucleotide base-changes between the megaprimer and uracilated DNA sequence in favor of the in vitro synthesized megaprimer. This method eliminates the inefficient subcloning steps that are normally required for the construction of affinity maturation libraries from randomly mutagenized antibody genes.


Subject(s)
Mutagenesis , Peptide Library , Recombinant Proteins/biosynthesis , Escherichia coli/genetics , Polymerase Chain Reaction
5.
Methods ; 58(1): 28-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22819852

ABSTRACT

Affinity reagents, such as antibodies, are needed to study protein expression patterns, sub-cellular localization, and post-translational modifications in complex mixtures and tissues. Phage Emulsion, Secretion, and Capture (ESCape) is a novel micro-emulsion technology that utilizes water-in-oil (W/O) emulsions for the identification and isolation of cells secreting phage particles that display desirable antibodies. Using this method, a large library of antibody-displaying phage will bind to beads in individual compartments. Rather than using biopanning on a large mixed population, phage micro-emulsion technology allows us to individually query clonal populations of amplified phage against the antigen. The use of emulsions to generate microdroplets has the promise of accelerating phage selection experiments by permitting fine discrimination of kinetic parameters for binding to targets. In this study, we demonstrate the ability of phage micro-emulsion technology to distinguish two scFvs with a 300-fold difference in binding affinities (100nM and 300pM, respectively). In addition, we describe the application of phage micro-emulsion technology for the selection of scFvs that are resistant to elevated temperatures.


Subject(s)
Cell Surface Display Techniques , Directed Molecular Evolution , Single-Chain Antibodies/genetics , Antibody Affinity , Bacteriophage M13/genetics , Emulsions , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Humans , Kinetics , Mutagenesis , Peptide Library , Polymerase Chain Reaction , Protein Binding , Protein Engineering , Protein Stability , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...