Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791684

ABSTRACT

B-cell lymphomas (BCL) is the most frequent hematological cancer in dogs. Treatment typically consists of chemotherapy, with CHOP-based protocols. However, outcome remains generally poor, urging the exploration of new therapeutic strategies with a targeted approach. Myc transcription factor plays a crucial role in regulating cellular processes, and its dysregulation is implicated in numerous human and canine malignancies, including canine BCL (cBCL). This study aims to evaluate the efficacy of indirectly inhibiting Myc in cBCL using BI2536 and MZ1 compounds in two in vitro models (CLBL-1 and KLR-1201). Both BI2536 and MZ1, alone and combined, affected cell viability in a significant concentration- and time-dependent manner. Western Blot revealed an upregulation of PLK1 expression in both cell lines upon treatment with BI2536, in association with a reduction in c-Myc protein levels. Conversely, MZ1 led to a decrease in its primary target, BRD4, along with a reduction in c-Myc. Furthermore, BI2536, both alone and in combination with MZ1, induced larger transcriptomic changes in cells compared to MZ1 alone, primarily affecting MYC target genes and genes involved in cell cycle regulation. These data underscore the potential role of Myc as therapeutic target in cBCL, providing a novel approach to indirectly modulate this molecule.

2.
Vet Pathol ; : 3009858241244853, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613423

ABSTRACT

Canine oral malignant melanoma (COMM) is the most common neoplasm in the oral cavity characterized by local invasiveness and high metastatic potential. Hypoxia represents a crucial feature of the solid tumor microenvironment promoting cancer progression and drug resistance. Hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, vascular endothelial growth factor A (VEGF-A), glucose transporter isoform 1 (GLUT1), C-X-C chemokine receptor type 4 (CXCR4), and carbonic anhydrase IX (CAIX), are the main regulators of the adaptive response to low oxygen availability. The prognostic value of these markers was evaluated in 36 COMMs using immunohistochemistry. In addition, the effects of cobalt chloride-mediated hypoxia were evaluated in 1 primary COMM cell line. HIF-1α expression was observed in the nucleus, and this localization correlated with the presence or enhanced expression of HIF-1α-regulated genes at the protein level. Multivariate analysis revealed that in dogs given chondroitin sulfate proteoglycan-4 (CSPG4) DNA vaccine, COMMs expressing HIF-1α, VEGF-A, and CXCR4 were associated with shorter disease-free intervals (DFI) compared with tumors that were negative for these markers (P = .03), suggesting hypoxia can influence immunotherapy response. Western blotting showed that, under chemically induced hypoxia, COMM cells accumulate HIF-1α and smaller amounts of CAIX. HIF-1α induction and stabilization triggered by hypoxia was corroborated by immunofluorescence, showing its nuclear translocation. These findings reinforce the role of an hypoxic microenvironment in tumor progression and patient outcome in COMM, as previously established in several human and canine cancers. In addition, hypoxic markers may represent promising prognostic markers, highlighting opportunities for their use in therapeutic strategies for COMMs.

3.
Methods Mol Biol ; 2749: 165-174, 2024.
Article in English | MEDLINE | ID: mdl-38133783

ABSTRACT

Skeletal muscle in cattle occupies a large part of the animal's body mass and develops into an important source of nutrients for human nutrition. Recently, the attention on bovine myogenic cells is increased to develop strategies of cultured in vitro meat as an alternative food source, more sustainable, ethical, and healthy than traditional meat production. At present, investigating the proliferation and differentiation of bovine skeletal muscle myogenic cells in vitro maintains its importance in the study of the mechanisms underlying the physiological and pathological events affecting the skeletal muscle, but it is of particular interest in animal husbandry and the food industry fields.In cell-based biological research, cell lines are one of the favored experimental tools because a population of cells could proliferate indefinitely in vitro under different stimuli, but they are limited to addressing the relevant biological properties of a cell population. On the other hand, primary cells from normal animal tissues undergo a limited number of divisions in vitro before they enter senescence but preserve their original characteristics and functions, and researchers can acquire the opportunity to study the individual donors and not just cells.In this chapter, we provide a basic protocol to isolate satellite cells from the skeletal muscle of cattle to obtain a good number of myogenic cells that can grow in in vitro conditions and undergo multiple rounds of cell division (myoblasts) before entering differentiation (myotubes). Furthermore, the robust expansion of these cells leads to the possibility to investigate physiological events or disorders related to the skeletal muscle tissue.


Subject(s)
Satellite Cells, Skeletal Muscle , Humans , Cattle , Animals , Cell Differentiation/physiology , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Cell Division , Cells, Cultured
4.
Methods Mol Biol ; 2749: 123-133, 2024.
Article in English | MEDLINE | ID: mdl-38133780

ABSTRACT

Embryo development is dependent upon the exchange of oxygen and nutrients through the placenta, mainly composed of peculiar epithelioid cells, known as trophoblast cells. Normal trophoblast functionality plays a key role during the whole pregnancy, especially in the first stage of placentation. This chapter explains the techniques to obtain sheep primary trophoblast cells from the early placenta. Overall, procedures for cell isolation, culture, characterization, and cryopreservation are described.


Subject(s)
Placenta , Trophoblasts , Pregnancy , Female , Animals , Sheep , Placentation , Embryonic Development , Cell Separation
5.
J Mammary Gland Biol Neoplasia ; 28(1): 10, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37219601

ABSTRACT

The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.


Subject(s)
ErbB Receptors , Mammary Glands, Animal , Mammary Glands, Human , Animals , Female , Humans , Mice , Disease Models, Animal , Ligands , Mammary Glands, Human/growth & development , Mammary Glands, Animal/growth & development
6.
Vet Comp Oncol ; 20(4): 890-900, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36054794

ABSTRACT

Osteosarcoma is the most common primary malignant bone tumour in dogs, characterized by a locally aggressive and highly metastatic behaviour. Despite the current standards of care, most dogs succumb to the disease, indicating the need for novel treatment strategies. Polo-like kinase 1 (PLK1) is dysregulated in a variety of human cancer types, including osteosarcoma, and induces c-Myc accumulation. The crosstalk between the two molecules coordinates cell proliferation, differentiation, self-renewal and apoptosis. Therefore, PLK1 has recently emerged as a potential therapeutic target, mainly in tumours overexpressing c-Myc. BI 2536 is a selective PLK1 inhibitor promoting mitotic arrest and apoptosis in a variety of cancer cells. This research aimed at evaluating PLK1 and c-Myc protein expression in 53 appendicular canine osteosarcoma (cOSA) samples and the in vitro effects of BI 2536 on a c-Myc and PLK1-overexpressing cOSA cell line (D17). PLK1 and c-Myc expression in cOSA samples showed no correlation with clinicopathological data. However, c-Myc overexpression was associated with a significantly reduced overall survival (p = .003). Western Blot and RT-qPCR assays revealed that D17 expressed high protein and transcript levels of both PLK1 and MYC. When treated with BI 2536 (range 2.5-15 nM) for 24 h, D17 showed a substantial decrease in cell growth, inducing apoptosis and G2 /M cell cycle arrest. Interestingly, under BI 2536 treatment, D17 showed decreased c-Myc protein levels. Consistent with human OSA, these preliminary data outline the prognostic value of c-Myc expression in cOSA and highlight the potential role of PLK1 as an antiproliferative therapeutic target for tumours overexpressing c-Myc.


Subject(s)
Bone Neoplasms , Dog Diseases , Osteosarcoma , Dogs , Animals , Humans , Cell Line, Tumor , Dog Diseases/drug therapy , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Osteosarcoma/genetics , Osteosarcoma/veterinary , Osteosarcoma/drug therapy , Cell Proliferation , Apoptosis , Bone Neoplasms/genetics , Bone Neoplasms/veterinary , Bone Neoplasms/drug therapy , Polo-Like Kinase 1
7.
Metabolites ; 11(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34357343

ABSTRACT

The phytoestrogen genistein (GEN) may interfere with permanent morphological changes in the brain circuits sensitive to estrogen. Due to the frequent use of soy milk in the neonatal diet, we aimed to study the effects of early GEN exposure on some physiological and reproductive parameters. Mice of both sexes from PND1 to PND8 were treated with GEN (50 mg/kg body weight, comparable to the exposure level in babies fed with soy-based formulas). When adult, we observed, in GEN-treated females, an advanced pubertal onset and an altered estrous cycle, and, in males, a decrease of testicle weight and fecal testosterone concentration. Furthermore, we observed an increase in body weight and altered plasma concentrations of metabolic hormones (leptin, ghrelin, triiodothyronine) limited to adult females. Exposure to GEN significantly altered kisspeptin and POMC immunoreactivity only in females and orexin immunoreactivity in both sexes. In conclusion, early postnatal exposure of mice to GEN determines long-term sex-specific organizational effects. It impairs the reproductive system and has an obesogenic effect only in females, which is probably due to the alterations of neuroendocrine circuits controlling metabolism; thus GEN, should be classified as a metabolism disrupting chemical.

8.
Sci Rep ; 11(1): 15815, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349188

ABSTRACT

Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals' weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection.


Subject(s)
Biomarkers/analysis , Circulating MicroRNA/genetics , Hypertrophy/diagnosis , Muscle, Skeletal/metabolism , Muscular Diseases/diagnosis , Myostatin/metabolism , Age Factors , Animals , Body Weight , Cattle , Circulating MicroRNA/analysis , Hypertrophy/blood , Hypertrophy/genetics , Muscular Diseases/blood , Muscular Diseases/genetics , Myostatin/genetics , Pilot Projects
9.
Mol Cell Endocrinol ; 520: 111081, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33181234

ABSTRACT

During puberty, the mammary gland undergoes an intense growth, dependent on the interplay between the Epidermal Growth Factor Receptor (EGFR) in the stroma and different mammary epithelial receptors. We hypothesize that EGFR expressed in the mammary epithelium also has a role in puberty and the epithelial cells can self-sustain by EGFR-mediated autocrine signaling. We adopted mammary cell lines from different species, as in vitro model for the epithelium, and we observed that EGFR-signaling positively affects their survival and proliferation. Once deprived of external growth factors, mammary cells still showed strong Erk 1/2 phosphorylation, abolished upon EGFR inhibition, coupled with a further reduction in survival and proliferation. Based on gene expression analysis, three EGFR-ligands (AREG, EREG and HBEGF) are likely to mediate this autocrine signaling. In conclusion, internal EGFR-activating signals sustain mammary epithelial cell proliferation and survival in vitro.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Human/cytology , Signal Transduction , Animals , Autocrine Communication , Cattle , Cell Cycle , Cell Line , Cell Proliferation , Cell Survival , ErbB Receptors/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Humans , Intercellular Signaling Peptides and Proteins/deficiency , Keratin-14/metabolism , Keratin-18/metabolism , Ligands , Mice , Receptor, ErbB-2/metabolism , Species Specificity
10.
Vet Comp Oncol ; 18(1): 117-127, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31816142

ABSTRACT

Canine osteosarcoma (OSA) is the most common primary malignant bone tumour in dogs, and it has a high metastatic rate and poor prognosis. Toceranib phosphate (TOC; Palladia, Zoetis) is a veterinary tyrosine kinase inhibitor that selectively inhibits VEGFR-2, PDGFRs and c-Kit, but its efficacy is not yet fully understood in the treatment of canine OSA. Here, we evaluated the functional effects of TOC on six OSA cell lines by transwell, wound healing and colony formation assays. Subsequently, two cell lines (Wall and Penny) were selected and were inoculated in mice by intrafemoral injection to develop an orthotopic xenograft model of canine OSA. For each cell line, 30 mice were xenografted; half of them were used as controls, and the other half were treated with TOC at 40 mg/kg body weight for 20 days. TOC inhibited cell growth of all cell lines, but reduced invasion and migration was only observed in Penny and Wall cell lines. In mice engrafted with Penny cells and subjected to TOC treatment, decreased tumour growth was observed, and PDGFRs and c-Kit mRNA were downregulated. Immunohistochemical analyses demonstrated a significant reduction of Ki67 staining in treated mice when compared to controls. The results obtained here demonstrate that TOC is able to slightly inhibit cell growth in vitro, while its effect is evident only in a Penny cell xenograft model, in which TOC significantly reduced tumour size and the Ki67 index without modifying apoptosis markers.


Subject(s)
Bone Neoplasms/drug therapy , Indoles/pharmacology , Osteosarcoma/drug therapy , Pyrroles/pharmacology , Animals , Bone Neoplasms/veterinary , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Dogs , Heterografts , In Vitro Techniques , Mice , Treatment Outcome
11.
Stem Cell Res ; 37: 101442, 2019 05.
Article in English | MEDLINE | ID: mdl-31026685

ABSTRACT

Mesenchymal stem cells (MSCs) have been used in equines as an alternative therapy. A comparative study about the phenotype and in vitro performance of different MSCs tissue sources in adult equines was needed. This study might serve to provide the knowledge to select a valuable harvesting source of MSCs. Bone marrow, synovial and adipose (mesenteric, neck and tail fat) tissues were collected from adult equines. Cell surface markers expression (CD11α/CD18, CD45, CD79α, CD90, CD105 and MHC II) and in vitro differentiation assays were made. In vitro cell migration, cell growth and wound healing capacity tests helped to study their behavior and properties. MSCs phenotype was positively confirmed by the cell surfaces markers and a tri-lineage differentiation profile. Bone marrow cells showed the highest migration capacity, while synovial fluid cells displayed the highest cell growth. Bone marrow cells showed a better wound healing when compared with all the different MSCs. We conclude that bone marrow, synovial and adipose tissue derived from adult equines are a good source for cell therapy but they conserve different functional properties: bone marrow showed an interesting migration and wound healing capacity while synovial fluid cells and their highest cell growth suggest that these MSCs would yield higher cell numbers in a shorter time.


Subject(s)
Adipose Tissue/cytology , Bone Marrow Cells/cytology , Cell Differentiation , Mesenchymal Stem Cells/cytology , Neck/growth & development , Synovial Fluid/cytology , Tail/cytology , Adipose Tissue/metabolism , Animals , Bone Marrow Cells/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Horses , Mesenchymal Stem Cells/metabolism , Synovial Fluid/metabolism , Tail/metabolism , Wound Healing
12.
Vet Pathol ; 56(2): 220-229, 2019 03.
Article in English | MEDLINE | ID: mdl-30558510

ABSTRACT

RON is a tyrosine kinase receptor activated by the macrophage-stimulating protein (MSP) ligand that is overexpressed in human breast cancer. In humans, RON protein can be present in different isoforms, and the most studied isoform is represented by the short form of RON ( sf-RON), which is generated by an alternative promoter located in intron 10 of the RON complementary DNA (cDNA). It plays an important role in breast cancer progression. Considering the many similarities between feline mammary carcinoma (FMC) and human breast cancer, the aim of this study was to investigate the expression of both RON and MSP in FMCs and to identify the presence of the sf-RON transcript. Tissue samples of spontaneous mammary tumors were collected from 60 queens (10 benign lesions, 50 carcinomas). All of the samples were tested for RON and MSP expression by immunohistochemistry; moreover, RNA was extracted from paraffin-embedded tissue samples, and the cDNA was tested by reverse transcription-polymerase chain reaction (RT-PCR) to identify the presence of sf-RON. Immunohistochemistry detected the expression of RON and MSP in 34 of 50 (68%) and 29 of 50 (58%) FMCs, respectively. RT-PCR revealed the presence of the short-form in 18 of 47 (38%) FMCs. This form originates, as in humans, from an alternative promoter (P2), and it codes for the proper feline short form ( sf-RON). sf-RON expression was associated with poorly differentiated tumors and with a shorter disease-free ( P < .05; hazard ratio [HR], 2.2) period and a shorter survival ( P < .05; HR, 2.2). These results support FMC as a suitable model in comparative oncology and identify sf-RON expression as potential predictor of outcomes for this disease.


Subject(s)
Cat Diseases/metabolism , Mammary Neoplasms, Animal/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Cat Diseases/diagnosis , Cat Diseases/pathology , Cats , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/diagnosis , Mammary Neoplasms, Animal/pathology , Prognosis , Receptor Protein-Tyrosine Kinases/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sequence Analysis, DNA , Survival Analysis
13.
Antioxidants (Basel) ; 8(1)2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30587765

ABSTRACT

Reactive oxygen species (ROS) are produced as a natural byproduct of the normal metabolism of oxygen and play significant roles in cell signaling and homeostasis. Although ROS have been involved in pathological processes as diverse as cancer, cardiovascular disease, and aging, they may to exert an effect even in a physiological context. In the central nervous system, stem cells and hematopoietic stem cells are early progenitors that contain lower levels of ROS than their more mature progeny. These different concentrations have been reported to be crucial for maintaining stem cell function. Mammary gland remodeling has been proposed to be organized through the activation and regulation of cells with stemness, either considered real stem cells or primitive precursors. Given the state of oxidative stress in the mammary gland tissue induced by high milk production, in particular in highly productive dairy cows; several studies have focused on the relationship between adult mammary stem cells and the oxidative state of the gland. The oxidative state of the mammary gland appears to be involved in the initial development and metastasis of breast cancer through interference with mammary cancerous stem cells. This review summarizes some links between the mammary stem and oxidative state of the gland.

14.
Methods Mol Biol ; 1817: 137-144, 2018.
Article in English | MEDLINE | ID: mdl-29959710

ABSTRACT

Bovine mammary organoids are cell aggregates that are produced by an association of a mechanical and an enzymatic dissociation of mammary gland tissue. They provide a useful source to isolate mammary epithelial cells, but can also be frozen as an intermediate dissociation step.Due to the strong cell-cell interactions among epithelial cells, the production and isolation of organoids is an efficient way to remove unwanted cell population of non-epithelial origin like fibroblasts.


Subject(s)
Mammary Glands, Animal/cytology , Organoids/cytology , Tissue Culture Techniques/methods , Animals , Cattle , Epithelial Cells/cytology , Female , Models, Biological
15.
Methods Mol Biol ; 1817: 169-183, 2018.
Article in English | MEDLINE | ID: mdl-29959713

ABSTRACT

The biological characterization of mammary cancer cells is a prerequisite that helps the scientist understand some aspect of tumor biology. Once isolated from the tumor, cells are subjected to multiple tests that dissect their ability to growth, migrate, degrade the surrounding stroma, produce 3-dimensional structures and differentiate. Targeted inhibitors, when added to these tests, are used to unravel how specific growth factors, receptors, and intracellular translational pathways promote the ability of mammary tumor cells to achieve their biological behavior. Herein we describe a set of techniques used to put in focus the biological capacities in mammary cancer cells. When the characterization of a biological trait (e.g., proliferation) is assessable by multiple assays, we will limit the description to only one technique, possibly the easier to manage and that requires minimal laboratory equipment.


Subject(s)
Breast Neoplasms/pathology , Cell Culture Techniques/methods , Cell Line, Tumor/cytology , Mammary Neoplasms, Animal/pathology , Animals , Cell Differentiation , Cell Movement , Cell Proliferation , Female , Humans , MCF-7 Cells , Mice
16.
J Dairy Res ; 84(4): 414-417, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29154732

ABSTRACT

The work reported in this Research Communication describes the modification in epithelial cell populations during the first and the last month of milking in Holstein Friesian cows that have undergone different management during the dry period, and we report the differential expression of CD49f+ and cytokeratin18+ cell subpopulations. Twenty six cows were randomly divided into 2 balanced groups that were housed at stocking density of either 11 m2 (CTR) or 5 m2 from 21 ± 3 d before the expected calving until calving. Cells collected from milk samples taken in early lactation and late lactation were directly analysed for CD45, CD49f, cytokeratin 14, cytokeratin 18 and cell viability. We observed a differential expression with a significant reduction in CD49f+ (P < 0·01) and cytokeratin 18+ (P < 0·05) cells in early lactation. Differences were still evident in late lactation but were not significant. These observations suggest that mammary epithelial cell immunophenotypes could be associated with different animal management in the dry period and we hypothesise they may have a role as biomarkers for mammary gland function in dairy cows.


Subject(s)
Cattle , Epithelial Cells/cytology , Integrin alpha6/analysis , Mammary Glands, Animal/cytology , Milk/cytology , Animals , Cell Count/veterinary , Dairying , Epithelial Cells/chemistry , Female , Immunophenotyping , Keratin-18/analysis , Lactation/physiology
17.
Exp Cell Res ; 338(2): 245-50, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26321394

ABSTRACT

Adult mammary stem cells have been identified in several species including the bovine. They are responsible for the development of the gland and for cyclic remodeling during estrous cycles and pregnancy. Epithelial cell subpopulations exist within the mammary gland. We and others showed previously that the Colony Forming Cell (CFC) assay can be used to detect lineage-restricted mammary progenitors. We carried out CFCs with bovine mammary cells and manually separated colonies with specific morphologies associated with either a luminal or a myoepithelial phenotype. Expression of specific markers was assessed by immunocytochemistry or by flow cytometry to confirm that the manual separation resulted in isolation of phenotipically different cells. When transplanted in recipient immunodeficient mice, we found that only myoepithelial-like colonies gave rise to outgrowths that resembled bovine mammary alveoli, thus proving that adult stem cells were maintained during culture and segregated with myoepithelial cells. After recovery of the cells from the transplanted mice and subsequent progenitor content analysis, we found a tendency to detect a higher progenitor frequency when myoepithelial-like colonies were transplanted. We here demonstrate that bovine adult mammary stem cells can be sustained in short-term culture and that they can be enriched by manually selecting for basal-like morphology.


Subject(s)
Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Stem Cells/cytology , Animals , Biological Assay/methods , Biomarkers/metabolism , Cattle , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype
18.
Res Vet Sci ; 102: 1-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26412510

ABSTRACT

We previously proved that adult stem cells reside in the bovine mammary gland and possess an intrinsic potential to generate a functional mammary outgrowth. The aim of this study was to investigate on the immunophenotyping features retained by mammary stem-like cells detected in long term culture. Flow cytometry analysis showed different subpopulations of mammary epithelial cells emerging according to the timing of cell culture. CD49f(+)-cells significantly increased during the culture (p<0.01) and a similar trend was observed, even if less regular, for CD29(+) and ALDH1 positive cell populations. No difference during the culture was observed for CD24 positive cells but after 35 days of culture a subset of cells, CD49f positive, still retained regenerative capabilities in in vivo xenotransplants. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice. These results prove the presence of a multipotent cell subpopulation that retain a strong epithelial induction, confirmed in in vivo xenotransplants with a presumable in vitro expansion of the primitive population of adult mammary stem cells.


Subject(s)
Epithelial Cells/cytology , Immunophenotyping/veterinary , Mammary Glands, Animal/cytology , Stem Cells/cytology , Animals , Cattle , Cell Count , Female , Flow Cytometry , Mice , Multipotent Stem Cells/cytology , Phenotype
19.
Vet J ; 205(2): 272-80, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25257352

ABSTRACT

Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma.


Subject(s)
Bone Neoplasms/veterinary , Dog Diseases/metabolism , Gene Expression Regulation, Neoplastic/physiology , Osteosarcoma/veterinary , Receptor, IGF Type 1/metabolism , Animals , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Cell Line, Tumor , Dog Diseases/mortality , Dogs , Female , Male , Osteosarcoma/metabolism , Osteosarcoma/mortality , Receptor, IGF Type 1/genetics , Survival Analysis , Up-Regulation
20.
Res Vet Sci ; 97(2): 367-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25189469

ABSTRACT

The detection and characterization of bovine mammary stem cells may give a better understanding of the cyclic characteristic of mammary gland development. In turn, this could potentially offer techniques to manipulate lactation yield and for regenerative medicine. We previously demonstrated that adult stem cells reside in the bovine mammary gland and possess an intrinsic regenerative potential. In vitro maintenance and expansion of this primitive population is a challenging task that could make easier the study of adult mammary stem cells. The aim of this study is to investigate this possibility. Different subpopulations of mammary epithelial cells emerge when they are cultured in two defined culture conditions. Specific cell differentiation markers as cytokeratin 18 (CK18) and cytokeratin 14 (CK14) were expressed with significant differences according to culture conditions. Vimentin, a well-known fibroblast marker was observed to increase significantly (P < 0.5) only after day 20. In both conditions, after prolonged culture (25 days) a subset of cells still retained regenerative capabilities. These cells were able to form organized pseudo-alveoli when transplanted in immunodeficient mice as shown by the expression of cytokeratin 14 (CK14), cytokeratin 18 (CK18), p63 (a mammary basal cell layer marker) and Epithelial Cell Adhesion Molecule (EpCAM). We also were able to observe the presence of milk proteins signal in these regenerated structures, which is a specific marker of functional mammary alveoli. Progenitor content was also analyzed in vitro through Colony-Forming Cell (CFC) assays with no substantial differences among culture conditions and time points. These results demonstrate that long-term culture of a multipotent cell subpopulation with intrinsic regenerative potential is possible.


Subject(s)
Cattle , Cell Differentiation , Epithelial Cells/cytology , Mammary Glands, Animal/cytology , Multipotent Stem Cells/cytology , Phenotype , Animal Husbandry/methods , Animals , Cells, Cultured , Epithelial Cells/metabolism , Female , Keratin-14/metabolism , Keratin-18/metabolism , Lactation/metabolism , Mammary Glands, Animal/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Multipotent Stem Cells/metabolism , Transplantation, Heterologous/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...