Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
BMJ Open Ophthalmol ; 9(1)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684375

ABSTRACT

BACKGROUND: Retinal imaging, including fundus autofluorescence (FAF), strongly depends on the clearness of the optical media. Lens status is crucial since the ageing lens has both light-blocking and autofluorescence (AF) properties that distort image analysis. Here, we report both lens opacification and AF metrics and the effect on automated image quality assessment. METHODS: 227 subjects (range: 19-89 years old) received quantitative AF of the lens (LQAF), Scheimpflug, anterior chamber optical coherence tomography as well as blue/green FAF (BAF/GAF), and infrared (IR) imaging. LQAF values, the Pentacam Nucleus Staging score and the relative lens reflectivity were extracted to estimate lens opacification. Mean opinion scores of FAF and IR image quality were compiled by medical readers. A regression model for predicting image quality was developed using a convolutional neural network (CNN). Correlation analysis was conducted to assess the association of lens scores, with retinal image quality derived from human or CNN annotations. RESULTS: Retinal image quality was generally high across all imaging modalities (IR (8.25±1.99) >GAF >BAF (6.6±3.13)). CNN image quality prediction was excellent (average mean absolute error (MAE) 0.9). Predictions were comparable to human grading. Overall, LQAF showed the highest correlation with image quality grading criteria for all imaging modalities (eg, Pearson correlation±CI -0.35 (-0.50 to 0.18) for BAF/LQAF). BAF image quality was most vulnerable to an increase in lenticular metrics, while IR (-0.19 (-0.38 to 0.01)) demonstrated the highest resilience. CONCLUSION: The use of CNN-based retinal image quality assessment achieved excellent results. The study highlights the vulnerability of BAF to lenticular remodelling. These results can aid in the development of cut-off values for clinical studies, ensuring reliable data collection for the monitoring of retinal diseases.


Subject(s)
Cataract , Tomography, Optical Coherence , Humans , Aged , Middle Aged , Adult , Aged, 80 and over , Female , Male , Tomography, Optical Coherence/methods , Young Adult , Cataract/diagnostic imaging , Cataract/pathology , Retina/diagnostic imaging , Retina/pathology , Optical Imaging/methods , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Fluorescein Angiography/methods
2.
Invest Ophthalmol Vis Sci ; 65(4): 45, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687492

ABSTRACT

Purpose: To longitudinally assess the impact of high-risk structural biomarkers for natural disease progression in non-exudative age-related macular degeneration (AMD) on spatially resolved mesopic and scotopic fundus-controlled perimetry testing. Methods: Multimodal retinal imaging data and fundus-controlled perimetry stimuli points were semiautomatically registered according to landmark correspondences at each annual visit over a period of up to 4 years. The presence of sub-RPE drusen, subretinal drusenoid deposits, pigment epithelium detachments (PEDs), hyper-reflective foci (HRF), vitelliform lesions, refractile deposits, and incomplete RPE and outer retinal atrophy (iRORA) and complete RPE and outer retinal atrophy (cRORA) were graded at each stimulus position and visit. Localized retinal layer thicknesses were extracted. Mixed-effect models were used for structure-function correlation. Results: Fifty-four eyes of 49 patients with non-exudative AMD (mean age, 70.7 ± 9.1 years) and 27 eyes of 27 healthy controls (mean age, 63.4 ± 8.9 years) were included. During study course, presence of PED had the highest functional impact with a mean estimated loss of -1.30 dB (P < 0.001) for mesopic and -1.23 dB (P < 0.001) for scotopic testing, followed by HRF with -0.89 dB (mesopic, P = 0.001) and -0.87 dB (scotopic, P = 0.005). Subretinal drusenoid deposits were associated with a stronger visual impairment (mesopic, -0.38 dB; P = 0.128; scotopic, -0.37 dB; P = 0.172) compared with sub-RPE drusen (-0.22 dB, P = 0.0004; -0.18 dB, P = 0.006). With development of c-RORA, scotopic retinal sensitivity further significantly decreased (-2.15 dB; P = 0.02). Thickening of the RPE-drusen-complex and thinning of the outer nuclear layer negatively impacted spatially resolved retinal sensitivity. Conclusions: The presence of PED and HRF had the greatest prognostic impact on progressive point-wise sensitivity losses. Higher predominant rod than cone-mediated localized retinal sensitivity losses with early signs of retinal atrophy development indicate photoreceptor preservation as a potential therapeutic target for future interventional AMD trials.


Subject(s)
Disease Progression , Tomography, Optical Coherence , Visual Acuity , Visual Field Tests , Visual Fields , Humans , Female , Aged , Male , Middle Aged , Tomography, Optical Coherence/methods , Visual Acuity/physiology , Visual Fields/physiology , Macular Degeneration/physiopathology , Macular Degeneration/diagnosis , Retinal Drusen/physiopathology , Retinal Drusen/diagnosis , Biomarkers , Follow-Up Studies , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/physiopathology , Night Vision/physiology , Retina/physiopathology , Retina/diagnostic imaging , Retina/pathology , Aged, 80 and over , Fluorescein Angiography/methods
3.
Invest Ophthalmol Vis Sci ; 65(3): 4, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466281

ABSTRACT

A progression sequence for age-related macular degeneration onset may be determinable with consensus neuroanatomical nomenclature augmented by drusen biology and eye-tracked clinical imaging. This narrative review proposes to supplement the Early Treatment of Diabetic Retinopathy Study (sETDRS) grid with a ring to capture high rod densities. Published photoreceptor and retinal pigment epithelium (RPE) densities in flat mounted aged-normal donor eyes were recomputed for sETDRS rings including near-periphery rich in rods and cumulatively for circular fovea-centered regions. Literature was reviewed for tissue-level studies of aging outer retina, population-level epidemiology studies regionally assessing risk, vision studies regionally assessing rod-mediated dark adaptation (RMDA), and impact of atrophy on photopic visual acuity. The 3 mm-diameter xanthophyll-rich macula lutea is rod-dominant and loses rods in aging whereas cone and RPE numbers are relatively stable. Across layers, the largest aging effects are accumulation of lipids prominent in drusen, loss of choriocapillary coverage of Bruch's membrane, and loss of rods. Epidemiology shows maximal risk for drusen-related progression in the central subfield with only one third of this risk level in the inner ring. RMDA studies report greatest slowing at the perimeter of this high-risk area. Vision declines precipitously when the cone-rich central subfield is invaded by geographic atrophy. Lifelong sustenance of foveal cone vision within the macula lutea leads to vulnerability in late adulthood that especially impacts rods at its perimeter. Adherence to an sETDRS grid and outer retinal cell populations within it will help dissect mechanisms, prioritize research, and assist in selecting patients for emerging treatments.


Subject(s)
Geographic Atrophy , Macula Lutea , Macular Degeneration , Humans , Adult , Aged , Retina , Retinal Cone Photoreceptor Cells
4.
Invest Ophthalmol Vis Sci ; 65(3): 13, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466288

ABSTRACT

Purpose: Quantitative fundus autofluorescence (QAF) currently deploys an age-based score to correct for lens opacification. However, in elderly people, lens opacification varies strongly between individuals of similar age, and innate lens autofluorescence is not included in the current correction formula. Our goal was to develop and compare an individualized formula. Methods: One hundred thirty participants were examined cross-sectionally, and a subset of 30 participants received additional multimodal imaging 2-week post-cataract-surgery. Imaging included the Scheimpflug principle, anterior chamber optical coherence tomography (AC-OCT), lens quantitative autofluorescence (LQAF), and retinal QAF imaging. Among the subset, least absolute shrinkage and selection operator regression and backward selection was implemented to determine which lens score best predicts the QAF value after lens extraction. Subsequently, a spline mixed model was applied to the whole cohort to quantify the influence of LQAF and Scheimpflug on QAF. Results: Age and LQAF measurements were found to be the most relevant variables, whereas AC-OCT measurements and Scheimpflug were eliminated by backward selection. Both an increase in Scheimpflug and LQAF values were associated with a decrease in QAF. The prediction error of the spline model (mean absolute error [MAE] ± standard deviation) of 32.2 ± 23.4 (QAF a.u.) was markedly lower compared to the current age-based formula MAE of 96.1 ± 93.5. Both smooth terms, LQAF (P < 0.01) and Scheimpflug (P < 0.001), were significant for the spline mixed model. Conclusions: LQAF imaging proved to be the most predictive for the impact of the natural lens on QAF imaging. The application of lens scores in the clinic could improve the accuracy of QAF imaging interpretation and might allow including aged patients in future QAF studies.


Subject(s)
Cataract Extraction , Cataract , Lens, Crystalline , Aged , Humans , Lens, Crystalline/diagnostic imaging , Fundus Oculi , Retina
6.
Invest Ophthalmol Vis Sci ; 65(1): 10, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38170540

ABSTRACT

Purpose: Retinal pigment epithelium (RPE) cells show strong autofluorescence (AF). Here, we characterize the AF spectra of individual RPE cells in healthy eyes and those affected by age-related macular degeneration (AMD) and investigate associations between AF spectral response and the number of intracellular AF granules per cell. Methods: RPE-Bruch's membrane flatmounts of 22 human donor eyes, including seven AMD-affected eyes (early AMD, three; geographic atrophy, one; neovascular, three) and 15 unaffected macula (<51 years, eight; >80 years, seven), were imaged at the fovea, perifovea, and near-periphery using confocal AF microscopy (excitation 488 nm), and emission spectra were recorded (500-710 nm). RPE cells were manually segmented with computer assistance and stratified by disease status, and emission spectra were analyzed using cubic spline transforms. Intracellular granules were manually counted and classified. Linear mixed models were used to investigate associations between spectra and the number of intracellular granules. Results: Spectra of 5549 RPE cells were recorded. The spectra of RPE cells in healthy eyes showed similar emission curves that peaked at 580 nm for fovea and perifovea and at 575 and 580 nm for near-periphery. RPE spectral curves in AMD eyes differed significantly, being blue shifted by 10 nm toward shorter wavelengths. No significant association coefficients were found between wavelengths and granule counts. Conclusions: This large series of RPE cell emission spectra at precisely predefined retinal locations showed a hypsochromic spectral shift in AMD. Combining different microscopy techniques, our work has identified cellular RPE spectral AF and subcellular granule properties that will inform future in vivo investigations using single-cell imaging.


Subject(s)
Geographic Atrophy , Macula Lutea , Macular Degeneration , Humans , Retinal Pigment Epithelium/metabolism , Macular Degeneration/diagnosis , Macular Degeneration/metabolism , Bruch Membrane/metabolism , Geographic Atrophy/metabolism , Macula Lutea/metabolism
7.
Sci Rep ; 13(1): 17417, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833348

ABSTRACT

This study aimed to determine the retest variability of quantitative fundus autofluorescence (QAF) in patients with and without age-related macular degeneration (AMD) and evaluate the predictive value of patient reliability indices on retest reliability. A total of 132 eyes from 68 patients were examined, including healthy individuals and those with various stages of AMD. Duplicate QAF imaging was conducted at baseline and 2 weeks later across six study sites. Intraclass correlation (ICC) analysis was used to evaluate the consistency of imaging, and mean opinion scores (MOS) of image quality were generated by two researchers. The contribution of MOS and other factors to retest variation was assessed using mixed-effect linear models. Additionally, a Random Forest Regressor was trained to evaluate the extent to which manual image grading of image quality could be replaced by automated assessment (inferred MOS). The results showed that ICC values were high for all QAF images, with slightly lower values in AMD-affected eyes. The average inter-day ICC was found to be 0.77 for QAF segments within the QAF8 ring and 0.74 for peripheral segments. Image quality was predicted with a mean absolute error of 0.27 on a 5-point scale, and of all evaluated reliability indices, MOS/inferred MOS proved most important. The findings suggest that QAF allows for reliable testing of autofluorescence levels at the posterior pole in patients with AMD in a multicenter, multioperator setting. Patient reliability indices could serve as eligibility criteria for clinical trials, helping identify patients with adequate retest reliability.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Humans , Reproducibility of Results , Fluorescein Angiography/methods , Fundus Oculi , Macular Degeneration/diagnostic imaging
8.
Transl Vis Sci Technol ; 12(7): 8, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37418250

ABSTRACT

Purpose: Systemic chloroquine/hydroxychloroquine (CQ/HCQ) can cause severe ocular side effects including bull's eye maculopathy (BEM). Recently, we reported higher quantitative autofluorescence (QAF) levels in patients with CQ/HCQ intake. Here, QAF in patients taking CQ/HCQ in a 1-year follow-up is reported. Methods: Fifty-eight patients currently or previously treated with CQ/HCQ (cumulative doses 94-2435 g) and 32 age- and sex-matched healthy subjects underwent multimodal retinal imaging (infrared, red free, fundus autofluorescence [FAF], QAF [488 nm], and spectral-domain optical coherence tomography (SD-OCT). For analysis, custom written FIJI plugins were used for image processing, multimodal image stacks assembling, and QAF calculation. Results: Thirty patients (28 without BEM and 2 with BEM, age range = 25-69 years) were followed up (370 ± 63 days). QAF values in patients taking CQ/HCQ showed a significant increase between baseline and follow-up examination: 282.0 ± 67.9 to 297.7 ± 70.0 (QAF a.u.), P = 0.002. An increase up to 10% was observed in the superior macular hemisphere. Eight individuals (including 1 patient with BEM) had a pronounced QAF increase of up to 25%. Compared to healthy controls, QAF levels in patients taking CQ/HCQ were significantly increased (P = 0.04). Conclusions: Our study confirms our previous finding of increased QAF in patients taking CQ/HCQ with a further significant QAF increase from baseline to follow-up. Whether pronounced QAF increase might predispose for rapid progression toward structural changes and BEM development is currently investigated in ongoing studies. Translational Relevance: In addition to standard screening tools during systemic CQ/HCQ treatment, QAF imaging might be useful in CQ/HCQ monitoring and could serve as a screening tool in the future.


Subject(s)
Antirheumatic Agents , Hydroxychloroquine , Humans , Infant, Newborn , Infant , Hydroxychloroquine/adverse effects , Chloroquine/adverse effects , Antirheumatic Agents/adverse effects , Follow-Up Studies
9.
J Vis Exp ; (195)2023 05 26.
Article in English | MEDLINE | ID: mdl-37306417

ABSTRACT

A progression sequence for age-related macular degeneration (AMD) learned from optical coherence tomography (OCT)-based multimodal (MMI) clinical imaging could add prognostic value to laboratory findings. In this work, ex vivo OCT and MMI were applied to human donor eyes prior to retinal tissue sectioning. The eyes were recovered from non-diabetic white donors aged ≥80 years old, with a death-to-preservation time (DtoP) of ≤6 h. The globes were recovered on-site, scored with an 18 mm trephine to facilitate cornea removal, and immersed in buffered 4% paraformaldehyde. Color fundus images were acquired after anterior segment removal with a dissecting scope and an SLR camera using trans-, epi-, and flash illumination at three magnifications. The globes were placed in a buffer within a custom-designed chamber with a 60 diopter lens. They were imaged with spectral domain OCT (30° macula cube, 30 µm spacing, averaging = 25), near-infrared reflectance, 488 nm autofluorescence, and 787 nm autofluorescence. The AMD eyes showed a change in the retinal pigment epithelium (RPE), with drusen or subretinal drusenoid deposits (SDDs), with or without neovascularization, and without evidence of other causes. Between June 2016 and September 2017, 94 right eyes and 90 left eyes were recovered (DtoP: 3.9 ± 1.0 h). Of the 184 eyes, 40.2% had AMD, including early intermediate (22.8%), atrophic (7.6%), and neovascular (9.8%) AMD, and 39.7% had unremarkable maculas. Drusen, SDDs, hyper-reflective foci, atrophy, and fibrovascular scars were identified using OCT. Artifacts included tissue opacification, detachments (bacillary, retinal, RPE, choroidal), foveal cystic change, an undulating RPE, and mechanical damage. To guide the cryo-sectioning, OCT volumes were used to find the fovea and optic nerve head landmarks and specific pathologies. The ex vivo volumes were registered with the in vivo volumes by selecting the reference function for eye tracking. The ex vivo visibility of the pathology seen in vivo depends on the preservation quality. Within 16 months, 75 rapid DtoP donor eyes at all stages of AMD were recovered and staged using clinical MMI methods.


Subject(s)
Macular Degeneration , Tomography, Optical Coherence , Humans , Aged, 80 and over , Retina , Multimodal Imaging
10.
J Vis Exp ; (195)2023 05 26.
Article in English | MEDLINE | ID: mdl-37306429

ABSTRACT

Fundus autofluorescence (FAF) imaging allows the noninvasive mapping of intrinsic fluorophores of the ocular fundus, particularly the retinal pigment epithelium (RPE), now quantifiable with the advent of confocal scanning laser ophthalmoscopy-based quantitative autofluorescence (QAF). QAF has been shown to be generally decreased at the posterior pole in age-related macular degeneration (AMD). The relationship between QAF and various AMD lesions (drusen, subretinal drusenoid deposits) is still unclear. This paper describes a workflow to determine lesion-specific QAF in AMD. A multimodal in vivo imaging approach is used, including but not limited to spectral domain optical coherence tomography (SD-OCT) macular volume scanning and QAF. Using customized FIJI plug-ins, the corresponding QAF image is aligned with the near-infrared image from the SD-OCT scan (characteristic landmarks; i.e., vessel bifurcations). The foveola and the edge of the optic nerve head are marked in the OCT images (and transferred to the registered QAF image) for accurate positioning of the analysis grids. AMD-specific lesions can then be marked on individual OCT BScans or the QAF image itself. Normative QAF maps are created to account for the varying mean and standard deviation of QAF values throughout the fundus (QAF images from a representative AMD group were averaged to build normative standard retinal QAF AMD maps). The plug-ins record the X and Y coordinates, z-score (a numerical measurement that describes the QAF value in relation to the mean of AF maps in terms of standard deviation from the mean), mean intensity value, standard deviation, and number of pixels marked. The tools also determine z-scores from the border zone of marked lesions. This workflow and the analysis tools will improve the understanding of the pathophysiology and clinical AF image interpretation in AMD.


Subject(s)
Macular Degeneration , Optic Disk , Humans , Fundus Oculi , Workflow , Retina
11.
Bioengineering (Basel) ; 10(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37106625

ABSTRACT

Optical coherence tomography (OCT) enables in vivo diagnostics of individual retinal layers in the living human eye. However, improved imaging resolution could aid diagnosis and monitoring of retinal diseases and identify potential new imaging biomarkers. The investigational high-resolution OCT platform (High-Res OCT; 853 nm central wavelength, 3 µm axial-resolution) has an improved axial resolution by shifting the central wavelength and increasing the light source bandwidth compared to a conventional OCT device (880 nm central wavelength, 7 µm axial-resolution). To assess the possible benefit of a higher resolution, we compared the retest reliability of retinal layer annotation from conventional and High-Res OCT, evaluated the use of High-Res OCT in patients with age-related macular degeneration (AMD), and assessed differences of both devices on subjective image quality. Thirty eyes of 30 patients with early/intermediate AMD (iAMD; mean age 75 ± 8 years) and 30 eyes of 30 age-similar subjects without macular changes (62 ± 17 years) underwent identical OCT imaging on both devices. Inter- and intra-reader reliability were analyzed for manual retinal layer annotation using EyeLab. Central OCT B-scans were graded for image quality by two graders and a mean-opinion-score (MOS) was formed and evaluated. Inter- and intra-reader reliability were higher for High-Res OCT (greatest benefit for inter-reader reliability: ganglion cell layer; for intra-reader reliability: retinal nerve fiber layer). High-Res OCT was significantly associated with an improved MOS (MOS 9/8, Z-value = 5.4, p < 0.01) mainly due to improved subjective resolution (9/7, Z-Value 6.2, p < 0.01). The retinal pigment epithelium drusen complex showed a trend towards improved retest reliability in High-Res OCT in iAMD eyes but without statistical significance. Improved axial resolution of the High-Res OCT benefits retest reliability of retinal layer annotation and improves perceived image quality and resolution. Automated image analysis algorithms could also benefit from the increased image resolution.

12.
Invest Ophthalmol Vis Sci ; 64(1): 20, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36705929

ABSTRACT

Purpose: The purpose of this study was to analyze spatially resolved structural changes at retinal locations in presence (+) or absence (-) of hyper-reflective foci (HRF) in eyes with subretinal pigment epithelium (RPE) drusen in intermediate age-related macular degeneration (iAMD). Methods: Patients with IAMD (n = 40; mean age = 69.7 ± 9.2 [SD] years) and healthy controls (n = 27; 64.2 ± 9.0) underwent spectral-domain optical-coherence-tomography imaging and fundus-controlled perimetry testing. After reviewing retinal layer segmentation, presence of HRF was annotated and retinal layer thicknesses (RLTs) extracted using ImageJ. Localized RLTs were compared between +HRF and -HRF positions. Univariate mixed linear models were used to investigate associations among RLT, HRF presence, and HRF size. Results: In iAMD eyes, a mean of 11.1 ± 12.5 HRF were detected with a peak abundance at 0.5 to 1.5 mm eccentricity to the fovea. At +HRF positions, outer nuclear layer (ONL; P = 0.0013, average difference = -12.4 µm) and retinal pigment epithelium drusen complex (RPEDC; P < 0.0001, +45.6 µm) thicknesses differed significantly compared to -HRF positions, even after correcting for accompanying drusen-related RPEDC layer thickening (P = 0.01). Mixed linear models revealed a significant association between increasing HRF area and decreasing ONL (association score = -0.17, P < 0.0001; 95% confidence interval [CI] = -0.22 to -0.11), and inner photoreceptor segments (IS) layer thicknesses (-0.08, P = 0.005; 95% CI = -0.14 to -0.03). Spearman rank correlation analysis yielded a significant correlation between total HRF area and mesopic (P = 0.015), but not scotopic (P = 0.305) retinal sensitivity losses. Conclusions: Descriptive analysis of this study demonstrated a predominant distribution of HRF at a foveal eccentricity of 0.5 to 1.5 mm, whereas further refined topographic analysis revealed a significant ONL layer thinning in presence of HRF even after correction for sub-RPE drusen presence compared to lesions in absence of HRF. Longitudinal studies are further needed to analyze the prognostic impact as well as the role of HRF presence in the context of iAMD.


Subject(s)
Macular Degeneration , Retinal Drusen , Humans , Middle Aged , Aged , Retinal Drusen/diagnosis , Retinal Drusen/pathology , Retina/diagnostic imaging , Retina/pathology , Macular Degeneration/diagnosis , Macular Degeneration/pathology , Retinal Pigment Epithelium/pathology , Visual Field Tests , Tomography, Optical Coherence/methods
13.
Eye (Lond) ; 37(6): 1191-1201, 2023 04.
Article in English | MEDLINE | ID: mdl-35581370

ABSTRACT

BACKGROUND: Pigment epithelial detachments (PEDs) occur in association with various chorioretinal diseases. With respect to the broad clinical spectrum of PEDs we describe fundus autofluorescence (FAF) characteristics of PEDs. METHODS: Ninety-three eyes of 66 patients (mean age 71.9 ± 11.1) with uni- or bilateral PED ( ≥ 350 µm) were included in a retrospective cross-sectional study. PEDs were secondary to age-related macular degeneration (n = 79), central serous chorioretinopathy (n = 7), polypoidal choroidal vasculopathy (n = 2), pattern dystrophy (n = 3) or idiopathic PED (n = 2). FAF images were recorded using confocal scanning laser ophthalmoscopy (488 nm excitation wavelength, detection of emission >500 nm). Diagnosis of PED was confirmed using spectral-domain optical coherence tomography. A qualitative FAF grading system was established, and grading was performed by two independent readers. RESULTS: PEDs showed highly variable characteristics on FAF imaging. FAF within the area of PED was found to be irregular/granular (n = 59, 63.4%), increased (n = 28, 30.1%), decreased (n = 3, 3.2 %), or normal (n = 3, 3.2%). Accompanying FAF changes included condensation of macular pigment (n = 67, 72.0%), focally increased FAF at the PED apex (n = 14, 15.1%) or elsewhere (n = 52, 55.9%), focally decreased FAF (n = 23, 24.7%), a cartwheel-like pattern (n = 10, 10.8%), a doughnut sign (n = 6, 6.5%), and a halo of decreased FAF encircling the PED (completely n = 20, 21.5% or incompletely n = 20, 21.5%). CONCLUSIONS: PEDs show a variety of abnormal patterns on FAF imaging. These changes in FAF signals may be secondary to morphological and metabolic alterations within corresponding retinal layers and do not necessarily correspond with the underlying PED subtype or a specific pathology.


Subject(s)
Central Serous Chorioretinopathy , Retinal Detachment , Humans , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Cross-Sectional Studies , Retinal Pigment Epithelium/pathology , Retinal Detachment/diagnostic imaging , Retinal Detachment/pathology , Ophthalmoscopy/methods , Central Serous Chorioretinopathy/diagnosis , Central Serous Chorioretinopathy/pathology , Tomography, Optical Coherence/methods , Optical Imaging , Fluorescein Angiography/methods
14.
Article in English | MEDLINE | ID: mdl-38186747

ABSTRACT

Introduction: Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods: Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results: Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion: The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.

15.
Adv Ther ; 39(12): 5474-5486, 2022 12.
Article in English | MEDLINE | ID: mdl-36203046

ABSTRACT

INTRODUCTION: To demonstrate efficacy and safety of an ophthalmic hydrogel formulation of netilmicin/dexamethasone, containing xanthan gum twice a day (b.i.d.) versus netilmicin/dexamethasone eye drops four times a day (q.i.d) to treat inflammation and prevention of infection after cataract surgery. METHODS: Patients undergoing phacoemulsification with intraocular lens implantation (IOL) were randomised in two groups: group 1, twice daily (b.i.d.) dexamethasone 0.1%/netilmicin 0.3% (Netildex) ophthalmic gel; group 2, four times daily (q.i.d.) dexamethasone 0.1%/netilmicin 0.3% (Netildex) eye drops. Both treatments were administered for 14 days after surgery. Patients were evaluated before surgery, on the day of surgery and at 1, 7, 15 and 60 postoperative days. The primary efficacy endpoint was evaluation of cellularity and flare in the anterior chamber through slit-lamp biomicroscopy 7 days after surgery. Secondary endpoints included: presence of signs/symptoms of postoperative ocular inflammation and incidence of infection. RESULTS: One hundred seventy-three patients were randomised and 168 were evaluable. Flare and cellularity were resolved at day 7 in 92.5% of patients and almost completely by day 15. In both intent to treat (ITT) and per-protocol (PP) populations, the efficacy analysis demonstrated that the gel formulation administered twice a day was non-inferior to the eye drops administered four times a day. For ITT analysis, the lower limit of the 97.5% confidence interval (- 0.0535) was greater than the non-inferiority limit of -0.10. For the PP analysis, the lower limit of the 97.5% confidence interval (- 0.0526) was greater than the non-inferiority limit of - 0.10. The patient's global tolerability and reported symptoms were similar between treatment groups. No microbial load and no safety events were observed. CONCLUSIONS: Efficacy of the gel reduced posology (twice a day) is not inferior to four times a day eye drops. Both treatments were well tolerated and efficacious. The new reduced posology hydrogel formulation may improve patient compliance and quality of life. TRIAL REGISTRATION: Eudract: 2016-0021138-63; ClinicalTrial.gov: NCT029738880.


Subject(s)
Cataract , Netilmicin , Humans , Netilmicin/therapeutic use , Lens Implantation, Intraocular/adverse effects , Dexamethasone/adverse effects , Hydrogels/adverse effects , Quality of Life , Inflammation/drug therapy , Inflammation/etiology , Ophthalmic Solutions/therapeutic use , Double-Blind Method , Cataract/complications , Postoperative Complications/drug therapy , Postoperative Complications/prevention & control , Treatment Outcome
16.
J Clin Med ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079030

ABSTRACT

BACKGROUND: To investigate whether vaccination against SARS-CoV-2 is associated with the onset of retinal vascular occlusive disease (RVOD). METHODS: In this multicentre study, data from patients with central and branch retinal vein occlusion (CRVO and BRVO), central and branch retinal artery occlusion (CRAO and BRAO), and anterior ischaemic optic neuropathy (AION) were retrospectively collected during a 2-month index period (1 June-31 July 2021) according to a defined protocol. The relation to any previous vaccination was documented for the consecutive case series. Numbers of RVOD and COVID-19 vaccination were investigated in a case-by-case analysis. A case-control study using age- and sex-matched controls from the general population (study participants from the Gutenberg Health Study) and an adjusted conditional logistic regression analysis was conducted. RESULTS: Four hundred and twenty-one subjects presenting during the index period (61 days) were enrolled: one hundred and twenty-one patients with CRVO, seventy-five with BRVO, fifty-six with CRAO, sixty-five with BRAO, and one hundred and four with AION. Three hundred and thirty-two (78.9%) patients had been vaccinated before the onset of RVOD. The vaccines given were BNT162b2/BioNTech/Pfizer (n = 221), followed by ChadOx1/AstraZeneca (n = 57), mRNA-1273/Moderna (n = 21), and Ad26.COV2.S/Johnson & Johnson (n = 11; unknown n = 22). Our case-control analysis integrating population-based data from the GHS yielded no evidence of an increased risk after COVID-19 vaccination (OR = 0.93; 95% CI: 0.60-1.45, p = 0.75) in connection with a vaccination within a 4-week window. CONCLUSIONS: To date, there has been no evidence of any association between SARS-CoV-2 vaccination and a higher RVOD risk.

17.
Transl Vis Sci Technol ; 11(8): 19, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35984669

ABSTRACT

Purpose: Phenotype alterations of the retinal pigment epithelium (RPE) are a main characteristic of age-related macular degeneration (AMD). Individual RPE cell shape descriptors may help to delineate healthy from AMD-affected cells in early disease stages. Methods: Twenty-two human RPE flatmounts (7 eyes with AMD [early, 3; geographic atrophy, 1; neovascular, 3); 15 unaffected eyes [8 aged ≤51 years; 7 aged >80 years)] were imaged at the fovea, perifovea, and near periphery (predefined sample locations) using a laser-scanning confocal fluorescence microscope. RPE cell boundaries were manually marked with computer assistance. For each cell, 11 shape descriptors were calculated and correlated with donor age, cell autofluorescence (AF) intensity, and retinal location. Statistical analysis was performed using an ensemble classifier based on logistic regression. Results: In AMD, RPE was altered at all locations (most pronounced at the fovea), with area, solidity, and form factor being the most discriminatory descriptors. In the unaffected macula, aging had no significant effect on cell shape factors; however, with increasing distance to the fovea, area, solidity, and convexity increased while form factor decreased. Reduced AF in AMD was significantly associated with decreased roundness and solidity. Conclusions: AMD results in an altered RPE with enlarged and deformed cells that could precede clinically visible lesions and thus serve as early biomarkers for AMD onset. Our data may also help guide the interpretation of RPE morphology in in vivo studies utilizing high-resolution single-cell imaging. Translational Relevance: Our histologic RPE cell shape data have the ability to identify robust biomarkers for the early detection of AMD-affected cells, which also could serve as a basis for automated segmentation of RPE sheets.


Subject(s)
Geographic Atrophy , Macula Lutea , Macular Degeneration , Cell Shape , Geographic Atrophy/complications , Geographic Atrophy/pathology , Humans , Macular Degeneration/complications , Macular Degeneration/diagnosis , Macular Degeneration/pathology , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/pathology
18.
Sci Rep ; 12(1): 14337, 2022 08 29.
Article in English | MEDLINE | ID: mdl-36038591

ABSTRACT

Clinical discrimination of posterior uveitis entities remains a challenge. This exploratory, cross-sectional study investigated the green (GEFC) and red emission fluorescent components (REFC) of retinal and choroidal lesions in posterior uveitis to facilitate discrimination of the different entities. Eyes were imaged by color fundus photography, spectrally resolved fundus autofluorescence (Color-FAF) and optical coherence tomography. Retinal/choroidal lesions' intensities of GEFC (500-560 nm) and REFC (560-700 nm) were determined, and intensity-normalized Color-FAF images were compared for birdshot chorioretinopathy, ocular sarcoidosis, acute posterior multifocal placoid pigment epitheliopathy (APMPPE), and punctate inner choroidopathy (PIC). Multivariable regression analyses were performed to reveal possible confounders. 76 eyes of 45 patients were included with a total of 845 lesions. Mean GEFC/REFC ratios were 0.82 ± 0.10, 0.92 ± 0.11, 0.86 ± 0.10, and 1.09 ± 0.19 for birdshot chorioretinopathy, sarcoidosis, APMPPE, and PIC lesions, respectively, and were significantly different in repeated measures ANOVA (p < 0.0001). Non-pigmented retinal/choroidal lesions, macular neovascularizations, and fundus areas of choroidal thinning featured predominantly GEFC, and pigmented retinal lesions predominantly REFC. Color-FAF imaging revealed involvement of both, short- and long-wavelength emission fluorophores in posterior uveitis. The GEFC/REFC ratio of retinal and choroidal lesions was significantly different between distinct subgroups. Hence, this novel imaging biomarker could aid diagnosis and differentiation of posterior uveitis entities.


Subject(s)
Sarcoidosis , Uveitis, Posterior , Birdshot Chorioretinopathy , Coloring Agents , Cross-Sectional Studies , Fluorescein Angiography/methods , Humans , Optical Imaging/methods , Tomography, Optical Coherence/methods , Uveitis, Posterior/diagnostic imaging
19.
Cancers (Basel) ; 14(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35406581

ABSTRACT

Choroidal melanocytic lesions require reliable and precise clinical examination and diagnosis to differentiate benign choroidal nevi from choroidal melanoma, as the latter may become life-threatening through metastatic disease. To come to an accurate diagnosis, as well as for monitoring, and to assess the efficacy of therapy, various imaging modalities may be used, one of which is non-invasive fundus autofluorescence (FAF) imaging using novel high-resolution digital imaging technology. FAF imaging is based on the visualization of intrinsic fluorophores in the ocular fundus. Lipofuscin and melanolipofuscin within the postmitotic retinal pigment epithelium (RPE) cells represent the major fluorophores that contribute to the FAF signal. In addition, the presence or loss of absorbing molecular constituents may have an impact on the FAF signal. A choroidal melanoma can cause secondary retinal and RPE alterations that affect the FAF signal (e.g., occurrence of orange pigment). Therefore, FAF imaging supports multimodal imaging and gives additional information over and above conventional imaging modalities regarding retinal metabolism and RPE health status. This article summarises the features of FAF imaging and the role of FAF imaging in the context of choroidal melanoma, both before and following therapeutic intervention.

20.
Invest Ophthalmol Vis Sci ; 63(1): 23, 2022 01 03.
Article in English | MEDLINE | ID: mdl-35050307

ABSTRACT

Purpose: Human retinal pigment epithelium (RPE) cells contain lipofuscin, melanolipofuscin, and melanosome organelles that impact clinical autofluorescence (AF) imaging. Here, we quantified the effect of age-related macular degeneration (AMD) on granule count and histologic AF of RPE cell bodies. Methods: Seven AMD-affected human RPE-Bruch's membrane flatmounts (early and intermediate = 3, late dry = 1, and neovascular = 3) were imaged at fovea, perifovea, and near periphery using structured illumination and confocal AF microscopy (excitation 488 nm) and compared to RPE-flatmounts with unremarkable macula (n = 7, >80 years). Subsequently, granules were marked with computer assistance, and classified by their AF properties. The AF/cell was calculated from confocal images. The total number of granules and AF/cell was analyzed implementing a mixed effect analysis of covariance (ANCOVA). Results: A total of 152 AMD-affected RPE cells were analyzed (fovea = 22, perifovea = 60, and near-periphery = 70). AMD-affected RPE cells showed increased variability in size and a significantly increased granule load independent of the retinal location (fovea: P = 0.02, perifovea: P = 0.04, and near periphery: P < 0.01). The lipofuscin fraction of total organelles decreased and the melanolipofuscin fraction increased in AMD, at all locations (especially the fovea). AF was significantly lower in AMD-affected cells (fovea: <0.01, perifovea: <0.01, and near periphery: 0.02). Conclusions: In AMD RPE, lipofuscin was proportionately lowest in the fovea, a location also known to be affected by accumulation of soft drusen and preservation of cone-mediated visual acuity. Enlarged RPE cell bodies displayed increased net granule count but diminished total AF. Future studies should also assess the impact on AF imaging of RPE apical processes containing melanosomes.


Subject(s)
Bruch Membrane/pathology , Macular Degeneration/diagnosis , Microscopy, Confocal/methods , Optical Imaging/methods , Organelles/pathology , Retinal Pigment Epithelium/pathology , Tissue Donors , Aged, 80 and over , Female , Fovea Centralis/pathology , Humans , Male , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...