Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Sci Transl Med ; 14(665): eabh2369, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36197968

ABSTRACT

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.


Subject(s)
Hypogonadism , Nitric Oxide , Animals , Cognition , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypogonadism/complications , Hypogonadism/congenital , Hypogonadism/genetics , Mice , Mutant Proteins , Mutation/genetics , Nitric Oxide Synthase Type I/genetics , Nitrites
2.
Science ; 377(6610): eabq4515, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36048943

ABSTRACT

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Subject(s)
Cognition , Cognitive Dysfunction , Down Syndrome , Gonadotropin-Releasing Hormone , Olfaction Disorders , Adult , Animals , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/drug therapy , Down Syndrome/psychology , Female , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/physiology , Gonadotropin-Releasing Hormone/therapeutic use , Humans , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice , Middle Aged , Olfaction Disorders/drug therapy , Olfaction Disorders/etiology , Synaptic Transmission/drug effects , Young Adult
3.
Article in English | MEDLINE | ID: mdl-34152287

ABSTRACT

SUMMARY: Complete androgen-insensitivity syndrome (CAIS), a disorder of sex development (46,XY DSD), is caused primarily by mutations in the androgen receptor (AR). Gonadectomy is recommended due to the increased risk of gonadoblastoma, however, surgical intervention is often followed by loss of libido. We present a 26-year-old patient with CAIS who underwent gonadectomy followed by a significant decrease in libido, which was improved with testosterone treatment but not with estradiol. Genetic testing was performed and followed by molecular characterization. We found that this patient carried a previously unidentified start loss mutation in the androgen receptor. This variant resulted in an N-terminal truncated protein with an intact DNA binding domain and was confirmed to be loss-of-function in vitro. This unique CAIS case and detailed functional studies raise intriguing questions regarding the relative roles of testosterone and estrogen in libido, and in particular, the potential non-genomic actions of androgens. LEARNING POINTS: N-terminal truncation of androgen receptor can cause androgen-insensitivity syndrome. Surgical removal of testosterone-producing gonads can result in loss of libido. Libido may be improved with testosterone treatment but not with estradiol in some forms of CAIS. A previously unreported AR mutation - p.Glu2_Met190del (c.2T>C) - is found in a CAIS patient and results in blunted AR transcriptional activity under testosterone treatment.

4.
Neuroendocrinology ; 111(1-2): 99-114, 2021.
Article in English | MEDLINE | ID: mdl-32074614

ABSTRACT

BACKGROUND: Two loci (CHD7 and SOX10) underlying Kallmann syndrome (KS) were discovered through clinical and genetic analysis of CHARGE and Waardenburg syndromes, conditions that include congenital anosmia caused by olfactory bulb (CA/OBs) defects and congenital hypogonadotropic hypogonadism (CHH). We hypothesized that other candidate genes for KS could be discovered by analyzing rare syndromes presenting with these signs. Study Design, Size, Duration: We first investigated a family with Gorlin-Goltz syndrome (GGS) in which affected members exhibited clinical signs suggesting KS. Participants/Materials, Methods: Proband and family members underwent detailed clinical assessment. The proband received detailed neuroendocrine evaluation. Genetic analyses included sequencing the PTCH1 gene at diagnosis, followed by exome analyses of causative or candidate KS/CHH genes, in order to exclude contribution to the phenotypes of additional mutations. Exome analyses in additional 124 patients with KS/CHH probands with no additional GGS signs. RESULTS: The proband exhibited CA, absent OBs on magnetic resonance imaging, and had CHH with unilateral cryptorchidism, consistent with KS. Pulsatile Gonadotropin-releasing hormone (GnRH) therapy normalized serum gonadotropins and increased testosterone levels, supporting GnRH deficiency. Genetic studies revealed 3 affected family members harbor a novel mutation of PTCH1 (c.838G> T; p.Glu280*). This unreported nonsense deleterious mutation results in either a putative truncated Ptch1 protein or in an absence of translated Ptch1 protein related to nonsense mediated messenger RNA decay. This heterozygous mutation cosegregates in the pedigree with GGS and CA with OBs aplasia/hypoplasia and with CHH in the proband suggesting a genetic linkage and an autosomal dominant mode of inheritance. No pathogenic rare variants in other KS/CHH genes cosegregated with these phenotypes. In additional 124 KS/CHH patients, 3 additional heterozygous, rare missense variants were found and predicted in silico to be damaging: p.Ser1203Arg, p.Arg1192Ser, and p.Ile108Met. CONCLUSION: This family suggests that the 2 main signs of KS can be included in GGS associated with PTCH1 mutations. Our data combined with mice models suggest that PTCH1 could be a novel candidate gene for KS/CHH and reinforce the role of the Hedgehog signaling pathway in pathophysiology of KS and GnRH neuron migration.


Subject(s)
Anosmia/genetics , Basal Cell Nevus Syndrome/diagnosis , Basal Cell Nevus Syndrome/genetics , Hypogonadism/genetics , Kallmann Syndrome/diagnosis , Kallmann Syndrome/genetics , Patched-1 Receptor/genetics , Adult , Cohort Studies , Female , Humans , Male , Mutation
5.
Genet Med ; 22(11): 1759-1767, 2020 11.
Article in English | MEDLINE | ID: mdl-32724172

ABSTRACT

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS: We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS: Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS: We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.


Subject(s)
Hypogonadism , Infertility , Genetic Counseling , Humans , Hypogonadism/genetics , Mosaicism , Exome Sequencing
6.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883645

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Subject(s)
Cell Movement , Hypogonadism/congenital , Hypogonadism/genetics , Mutation , Nerve Growth Factors/genetics , Neurons/pathology , Adolescent , Animals , Cohort Studies , Female , Heterozygote , Humans , Hypogonadism/pathology , Male , Mice , Mice, Knockout , Nerve Growth Factors/physiology , Neurons/metabolism , Pedigree , Zebrafish
7.
Elife ; 82019 07 10.
Article in English | MEDLINE | ID: mdl-31291191

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a condition characterized by absent puberty and infertility due to gonadotropin releasing hormone (GnRH) deficiency, which is often associated with anosmia (Kallmann syndrome, KS). We identified loss-of-function heterozygous mutations in anti-Müllerian hormone (AMH) and its receptor, AMHR2, in 3% of CHH probands using whole-exome sequencing. We showed that during embryonic development, AMH is expressed in migratory GnRH neurons in both mouse and human fetuses and unconvered a novel function of AMH as a pro-motility factor for GnRH neurons. Pathohistological analysis of Amhr2-deficient mice showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in reduced fertility in adults. Our findings highlight a novel role for AMH in the development and function of GnRH neurons and indicate that AMH signaling insufficiency contributes to the pathogenesis of CHH in humans.


Subject(s)
Anti-Mullerian Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Hypogonadism/metabolism , Neurons/metabolism , Signal Transduction , Adolescent , Adult , Amino Acid Sequence , Animals , Anti-Mullerian Hormone/genetics , Axons/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , COS Cells , Cell Movement , Chlorocebus aethiops , Female , Fertility , Fetus/metabolism , Heterozygote , Humans , Loss of Function Mutation , Luteinizing Hormone/metabolism , Male , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Pedigree , Receptors, Transforming Growth Factor beta/deficiency , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Young Adult
8.
Ann Pediatr Endocrinol Metab ; 24(1): 49-54, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30943680

ABSTRACT

Mutations in the CHD7 gene, encoding for the chromodomain helicase DNA-binding protein 7, are found in approximately 60% of individuals with CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities and/or hearing loss). Herein, we present a clinical case of a 14-year-old male presenting for evaluation of poor growth and pubertal delay highlighting the diagnostic challenges of CHARGE syndrome. The patient was born full term and underwent surgery at 5 days of life for bilateral choanal atresia. Developmental milestones were normally achieved. At age 14 his height and weight were -2.04 and -1.74 standard deviation score respectively. He had anosmia as well as prepubertal testes and micropenis (4 cm×1 cm). The biological profile showed low basal serum testosterone and gonadotropins (testosterone, 0.2 nmol/L; luteinizing hormone, 0.5 U/L; follicle-stimulating hormone, 1.3 U/L), and otherwise normal pituitary function and normal imaging of the hypothalamic-pituitary area. The constellation of choanal atresia, anosmia, mild dysmorphic features, micropenis and delayed puberty were suggestive of CHARGE syndrome. Targeted genetic testing of CHD7 was performed revealing a de novo heterozygous CHD7 mutation (c.4234T>G [p.Tyr1412Asp]). Further paraclinical investigations confirmed CHARGE syndrome. Despite the presence of suggestive features, CHARGE syndrome remained undiagnosed in this patient until adolescence. Genetic testing helps clarify the phenotypic and genotypic spectrum to facilitate diagnosis, thus promoting optimal follow-up, treatment, and appropriate genetic counselling.

9.
Endocr Rev ; 40(2): 669-710, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30698671

ABSTRACT

The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (∼10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.


Subject(s)
Gonadotropin-Releasing Hormone , Gonadotropins/administration & dosage , Hypogonadism , Adolescent , Adult , Female , Gonadotropin-Releasing Hormone/administration & dosage , Gonadotropin-Releasing Hormone/deficiency , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypogonadism/congenital , Hypogonadism/diagnosis , Hypogonadism/drug therapy , Hypogonadism/metabolism , Infant , Infant, Newborn , Male
10.
Endocr Connect ; 7(12): 1480-1490, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30496128

ABSTRACT

46,XY differences and/or disorders of sex development (DSD) are clinically and genetically heterogeneous conditions. Although complete androgen insensitivity syndrome has a strong genotype-phenotype correlation, the other types of 46,XY DSD are less well defined, and thus, the precise diagnosis is challenging. This study focused on comparing the relationship between clinical assessment and genetic findings in a cohort of well-phenotyped patients with 46,XY DSD. The study was an analysis of clinical investigations followed by genetic testing performed on 35 patients presenting to a single center. The clinical assessment included external masculinization score (EMS), endocrine profiling and radiological evaluation. Array-comparative genomic hybridization (array-CGH) and sequencing of DSD-related genes were performed. Using an integrated approach, reaching the definitive diagnosis was possible in 12 children. The correlation between clinical and genetic findings was higher in patients with a more severe phenotype (median EMS 2.5 vs 6; P = 0.04). However, in 13 children, at least one variant of uncertain significance was identified, and most times this variant did not correspond to the original clinical diagnosis. In three patients, the genetic studies guided further clinical assessment which resulted in a reclassification of initial clinical diagnosis. Furthermore, we identified eight patients harboring variants in more than one DSD genes, which was not seen in controls (2.5%; P = 0.0003). In summary, taking into account potential challenges in reaching the definitive diagnosis in 46,XY DSD, only integrated approach seems to be the best routine practice.

11.
Obes Surg ; 28(12): 4006-4013, 2018 12.
Article in English | MEDLINE | ID: mdl-30109666

ABSTRACT

PURPOSE: Visceral adipose tissue (VAT) is associated with cardiometabolic risk factors and insulin resistance. The physiological mechanisms underlying the benefits of Roux-en-Y gastric bypass surgery (RYGB) on glucose metabolism remain incompletely understood. The impact of RYGB on VAT was assessed among three groups of patients stratified by their glucose tolerance before surgery. METHODS: Forty-four obese women were categorized into normoglycemia (n = 21), impaired glucose tolerance (IGT, n = 18) and diabetes (n = 5) before surgery. Body composition measured by dual-energy X-ray absorptiometry (DXA) was performed before surgery, 6 months and 12 months after. RESULTS: The three groups had comparable mean age (mean 38.6 ± SD 9.9) and BMI at baseline (41.9 ± 4.3 kg/m2). After 12 months, total weight loss (mean 35.1% ± 7.5) and excess weight loss (91.1% ± 25.1) were similar between groups. Pre-surgery mean VAT was significantly higher in diabetes (mean 2495 ± 616 g) than in normoglycemia (1750 ± 617 g, p = 0.02). The percentage of VAT to total body fat was significantly higher in diabetes (mean 4.4% ± 0.9) compared to normoglycemia (2.9% ± 0.8, p = 0.003). Twelve months after surgery, VAT loss was significantly greater among patients with diabetes (mean 1927 ± 413 g) compared to normoglycemia (1202 ± 450, p = 0.009). CONCLUSIONS: RYGB leads to important VAT loss, and this loss is greater in patients with diabetes prior to surgery. As VAT is associated with insulin resistance, this reduction may account for the profound impact of this surgery on glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Gastric Bypass , Glucose/metabolism , Intra-Abdominal Fat/metabolism , Obesity, Morbid/surgery , Absorptiometry, Photon , Adult , Biomarkers/metabolism , Body Composition , Diabetes Mellitus, Type 2/complications , Female , Follow-Up Studies , Glucose Intolerance/metabolism , Humans , Insulin Resistance , Middle Aged , Obesity, Morbid/complications , Obesity, Morbid/metabolism , Prospective Studies , Risk Factors , Treatment Outcome , Weight Loss/physiology
12.
Eur J Endocrinol ; 178(4): 377-388, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29419413

ABSTRACT

OBJECTIVE: Congenital hypogonadotropic hypogonadism (CHH) and constitutional delay of growth and puberty (CDGP) represent rare and common forms of GnRH deficiency, respectively. Both CDGP and CHH present with delayed puberty, and the distinction between these two entities during early adolescence is challenging. More than 30 genes have been implicated in CHH, while the genetic basis of CDGP is poorly understood. DESIGN: We characterized and compared the genetic architectures of CHH and CDGP, to test the hypothesis of a shared genetic basis between these disorders. METHODS: Exome sequencing data were used to identify rare variants in known genes in CHH (n = 116), CDGP (n = 72) and control cohorts (n = 36 874 ExAC and n = 405 CoLaus). RESULTS: Mutations in at least one CHH gene were found in 51% of CHH probands, which is significantly higher than in CDGP (7%, P = 7.6 × 10-11) or controls (18%, P = 5.5 × 10-12). Similarly, oligogenicity (defined as mutations in more than one gene) was common in CHH patients (15%) relative to CDGP (1.4%, P = 0.002) and controls (2%, P = 6.4 × 10-7). CONCLUSIONS: Our data suggest that CDGP and CHH have distinct genetic profiles, and this finding may facilitate the differential diagnosis in patients presenting with delayed puberty.


Subject(s)
Growth Disorders/diagnosis , Growth Disorders/genetics , Hypogonadism/diagnosis , Hypogonadism/genetics , Puberty, Delayed/diagnosis , Puberty, Delayed/genetics , Adult , Aged , Cohort Studies , Female , Finland/epidemiology , Growth Disorders/epidemiology , Humans , Hypogonadism/epidemiology , Male , Middle Aged , Mutation/genetics , Puberty, Delayed/epidemiology
13.
Hum Mol Genet ; 27(2): 359-372, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29202173

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice.


Subject(s)
DCC Receptor/genetics , Hypogonadism/genetics , Netrin-1/genetics , Adult , Cohort Studies , DCC Receptor/metabolism , Female , Fibronectin Type III Domain , Gonadotropin-Releasing Hormone/deficiency , Humans , Hypogonadism/metabolism , Hypogonadism/pathology , Male , Mutation , Netrin-1/metabolism , Neurons/metabolism , Neurons/pathology , Pedigree , Exome Sequencing
14.
Genet Med ; 20(8): 872-881, 2018 08.
Article in English | MEDLINE | ID: mdl-29144511

ABSTRACT

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH), a rare genetic disease caused by gonadotropin-releasing hormone deficiency, can also be part of complex syndromes (e.g., CHARGE syndrome). CHD7 mutations were reported in 60% of patients with CHARGE syndrome, and in 6% of CHH patients. However, the definition of CHD7 mutations was variable, and the associated CHARGE signs in CHH were not systematically examined. METHODS: Rare sequencing variants (RSVs) in CHD7 were identified through exome sequencing in 116 CHH probands, and were interpreted according to American College of Medical Genetics and Genomics guidelines. Detailed phenotyping was performed in CHH probands who were positive for CHD7 RSVs, and genotype-phenotype correlations were evaluated. RESULTS: Of the CHH probands, 16% (18/116) were found to harbor heterozygous CHD7 RSVs, and detailed phenotyping was performed in 17 of them. Of CHH patients with pathogenic or likely pathogenic CHD7 variants, 80% (4/5) were found to exhibit multiple CHARGE features, and 3 of these patients were reclassified as having CHARGE syndrome. In contrast, only 8% (1/12) of CHH patients with nonpathogenic CHD7 variants exhibited multiple CHARGE features (P = 0.01). CONCLUSION: Pathogenic or likely pathogenic CHD7 variants rarely cause isolated CHH. Therefore a detailed clinical investigation is indicated to clarify the diagnosis (CHH versus CHARGE) and to optimize clinical management.


Subject(s)
CHARGE Syndrome/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Hypogonadism/genetics , CHARGE Syndrome/diagnosis , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Family , Female , Genetic Association Studies , Genetic Variation/genetics , Heterozygote , Humans , Male , Mutation , Pedigree , Phenotype , Sequence Analysis, DNA
15.
EMBO Mol Med ; 9(10): 1379-1397, 2017 10.
Article in English | MEDLINE | ID: mdl-28754744

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin-releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with ß-Klotho (KLB), the obligate co-receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH Genetic screening of 334 CHH patients identified seven heterozygous loss-of-function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.


Subject(s)
Fibroblast Growth Factors/metabolism , Gonadotropin-Releasing Hormone/metabolism , Kallmann Syndrome/genetics , Membrane Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Animals , COS Cells , Caenorhabditis elegans/genetics , Chlorocebus aethiops , Cohort Studies , Female , Fibroblast Growth Factors/genetics , Gonadotropin-Releasing Hormone/genetics , HEK293 Cells , Humans , Hypothalamus/metabolism , Klotho Proteins , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Neurons/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics
16.
JCI Insight ; 2(8)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28422755

ABSTRACT

ß-Klotho (encoded by Klb) is the obligate coreceptor mediating FGF21 and FGF15/19 signaling. Klb-/- mice are refractory to beneficial action of pharmacological FGF21 treatment including stimulation of glucose utilization and thermogenesis. Here, we investigated the energy homeostasis in Klb-/- mice on high-fat diet in order to better understand the consequences of abrogating both endogenous FGF15/19 and FGF21 signaling during caloric overload. Surprisingly, Klb-/- mice are resistant to diet-induced obesity (DIO) owing to enhanced energy expenditure and BAT activity. Klb-/- mice exhibited not only an increase but also a shift in bile acid (BA) composition featured by activation of the classical (neutral) BA synthesis pathway at the expense of the alternative (acidic) pathway. High hepatic production of cholic acid (CA) results in a large excess of microbiota-derived deoxycholic acid (DCA). DCA is specifically responsible for activating the TGR5 receptor that stimulates BAT thermogenic activity. In fact, combined gene deletion of Klb and Tgr5 or antibiotic treatment abrogating bacterial conversion of CA into DCA both abolish DIO resistance in Klb-/- mice. These results suggested that DIO resistance in Klb-/- mice is caused by high levels of DCA, signaling through the TGR5 receptor. These data also demonstrated that gut microbiota can regulate host thermogenesis via conversion of primary into secondary BA. Pharmacologic or nutritional approaches to selectively modulate BA composition may be a promising target for treating metabolic disorders.

17.
J Clin Invest ; 117(2): 457-63, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17235395

ABSTRACT

Idiopathic hypogonadotropic hypogonadism (IHH) due to defects of gonadotropin-releasing hormone (GnRH) secretion and/or action is a developmental disorder of sexual maturation. To date, several single-gene defects have been implicated in the pathogenesis of IHH. However, significant inter- and intrafamilial variability and apparent incomplete penetrance in familial cases of IHH are difficult to reconcile with the model of a single-gene defect. We therefore hypothesized that mutations at different IHH loci interact in some families to modify their phenotypes. To address this issue, we studied 2 families, one with Kallmann syndrome (IHH and anosmia) and another with normosmic IHH, in which a single-gene defect had been identified: a heterozygous FGF receptor 1 (FGFR1) mutation in pedigree 1 and a compound heterozygous gonadotropin-releasing hormone receptor (GNRHR) mutation in pedigree 2, both of which varied markedly in expressivity within and across families. Further candidate gene screening revealed a second heterozygous deletion in the nasal embryonic LHRH factor (NELF) gene in pedigree 1 and an additional heterozygous FGFR1 mutation in pedigree 2 that accounted for the considerable phenotypic variability. Therefore, 2 different gene defects can synergize to produce a more severe phenotype in IHH families than either alone. This genetic model could account for some phenotypic heterogeneity seen in GnRH deficiency.


Subject(s)
Hypogonadism/genetics , Mutation , Adult , Amino Acid Sequence , Base Sequence , Conserved Sequence , DNA/genetics , Female , Fibroblast Growth Factor 8/metabolism , Genotype , Gonadotropin-Releasing Hormone/deficiency , Heterozygote , Humans , Hypogonadism/etiology , Hypogonadism/metabolism , Kallmann Syndrome/genetics , Male , Models, Genetic , Models, Molecular , Molecular Sequence Data , Pedigree , Phenotype , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptors, LHRH/genetics , Sequence Deletion , Sequence Homology, Amino Acid , Transcription Factors/genetics
18.
Mol Cell Endocrinol ; 254-255: 60-9, 2006 Jul 25.
Article in English | MEDLINE | ID: mdl-16764984

ABSTRACT

BACKGROUND: Kallmann's syndrome (KS) is a clinically and genetically heterogeneous disorder consisting of idiopathic hypogonadotropic hypogonadism (IHH) and anosmia. Mutations in KAL1 causing the X-linked form of KS have been identified in 10% of all KS patients and consistently result in a severe reproductive phenotype. KAL1 gene encodes for anosmin-1, a key protein involved in olfactory and GnRH neuronal migration through a putative interaction with FGFR1. Heterozygous mutations in the FGFR1 gene accompanied by a high frequency of cleft palate and other facial dysmorphisms were recently identified in 8% of a large KS cohort, yet the reproductive phenotype of KS patients harboring FGFR1 mutations has not been described. RESULTS: One hundred and fifty probands with KS (130 males and 20 females) were studied to determine the frequency and distribution of FGFR1 mutations and their detailed reproductive phenotypes. Fifteen heterozygous mutations in unrelated probands were identified. Twelve missense mutations (p.R78C, p.V102I, p.D224H, p.G237D, p.R254Q, p.V273M, p.E274G, p.Y339C, p.S346C, p.I538V, p.G703S and p.G703R) were distributed among the first, second and third immunoglobulin-like domains (D1-D3), as well as the tyrosine kinase domain (TKD). The mutations Y339C and S346C are located in exon 8B and code for the isoform FGFR1c. Additionally, two nonsense mutations (p.T585X and p.R622X) were documented in the TKD of the protein. A wide spectrum of reproductive function was observed among KS probands including: (1) a severe phenotype demonstrated by microphallus, cryptorchidism, no pubertal development, undetectable serum gonadotropins and low serum testosterone (T) and inhibin B; (2) partial pubertal development; (3) the fertile eunuch variant of IHH with normal testicular size and active spermatogenesis with a reversal of HH after T therapy. In addition, we found an even wider spectrum of reproductive function within pedigrees carrying an FGFR1 mutation ranging from IHH to delayed puberty to normal reproductive function (anosmia only or asymptomatic carriers). These observations strongly suggest a role for other genes that modify the phenotype of FGFR1 mutations. CONCLUSION: KS patients and family members carrying an FGFR1 mutation present a broad spectrum of pubertal development in contrast to the almost uniform severe clinical phenotype described in KS subjects with a KAL1 mutation. Additionally, this report implicates the isoform FGFR1c in the pathogenesis of KS.


Subject(s)
Kallmann Syndrome/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Reproduction/genetics , Adolescent , Child , Cleft Palate/genetics , Cohort Studies , DNA Mutational Analysis , Female , Gene Frequency , Genetic Variation , Humans , Hypogonadism/genetics , Male , Models, Molecular , Mutation , Olfaction Disorders/genetics , Pedigree , Phenotype , Puberty, Delayed/genetics , Receptor, Fibroblast Growth Factor, Type 1/physiology , Reproduction/physiology
19.
Proc Natl Acad Sci U S A ; 103(16): 6281-6, 2006 Apr 18.
Article in English | MEDLINE | ID: mdl-16606836

ABSTRACT

Mutations in KAL1 and FGFR1 cause Kallmann syndrome (KS), whereas mutations in the GNRHR and GPR54 genes cause idiopathic hypogonadotropic hypogonadism with normal olfaction (nIHH). Mixed pedigrees containing both KS and nIHH have also been described; however, the genetic cause of these rare cases is unknown. We examined the FGFR1 gene in seven nIHH subjects who either belonged to a mixed pedigree (n = 5) or who had associated midline defects (n = 2). Heterozygous FGFR1 mutations were found in three of seven unrelated nIHH probands with normal MRI of the olfactory system: (i) G237S in an nIHH female and a KS brother; (ii) (P722H and N724K) in an nIHH male missing two teeth and his mother with isolated hyposmia; and (iii) Q680X in a nIHH male with cleft lip/palate and missing teeth, his brother with nIHH, and his father with delayed puberty. We show that these mutations lead to receptor loss-of-function. The Q680X leads to an inactive FGFR1, which lacks a major portion of the tyrosine kinase domain (TKD). The G237S mutation inhibits proper folding of D2 of the FGFR1 and likely leads to the loss of cell-surface expression of FGFR1. In contrast, the (P722H and N724K) double mutation causes structural perturbations in TKD, reducing the catalytic activity of TKD. We conclude that loss-of-function mutations in FGFR1 cause nIHH with normal MRI of the olfactory system. These mutations also account for some of the mixed pedigrees, thus challenging the current idea that KS and nIHH are distinct entities.


Subject(s)
Gonadotropins/deficiency , Hypogonadism/genetics , Kallmann Syndrome/genetics , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Amino Acid Substitution , Female , Genotype , Gonadotropins/genetics , Heterozygote , Humans , Male , Mutation , Pedigree , Phenotype , Protein Conformation , Receptor, Fibroblast Growth Factor, Type 1/genetics
20.
Am J Hum Genet ; 77(1): 16-26, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15871139

ABSTRACT

Biotin-responsive basal ganglia disease (BBGD) is a recessive disorder with childhood onset that presents as a subacute encephalopathy, with confusion, dysarthria, and dysphagia, and that progresses to severe cogwheel rigidity, dystonia, quadriparesis, and eventual death, if left untreated. BBGD symptoms disappear within a few days with the administration of high doses of biotin (5-10 mg/kg/d). On brain magnetic resonance imaging examination, patients display central bilateral necrosis in the head of the caudate, with complete or partial involvement of the putamen. All patients diagnosed to date are of Saudi, Syrian, or Yemeni ancestry, and all have consanguineous parents. Using linkage analysis in four families, we mapped the genetic defect near marker D2S2158 in 2q36.3 (LOD=5.9; theta=0.0) to a minimum candidate region (approximately 2 Mb) between D2S2354 and D2S1256, on the basis of complete homozygosity. In this segment, each family displayed one of two different missense mutations that altered the coding sequence of SLC19A3, the gene for a transporter related to the reduced-folate (encoded by SLC19A1) and thiamin (encoded by SLC19A2) transporters.


Subject(s)
Basal Ganglia Diseases/genetics , Biotin/pharmacology , Chromosomes, Human, Pair 2 , Membrane Transport Proteins/genetics , Base Sequence , Female , Genes, Recessive , Humans , Male , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...