Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 347: 123725, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38467369

ABSTRACT

Methylmercury (MeHg) is one of the most worrisome pollutants in marine systems. MeHg detoxification is mediated by merB and merA genes, responsible for the demethylation of MeHg and the reduction of inorganic mercury, respectively. Little is known about the biological capacity to detoxify this compound in marine environments, and even less the bacterial transcriptional changes during MeHg detoxification. This study provides the genomic and transcriptomic characterization of the deep ocean bacteria Alteromonas mediterranea ISS312 with capacity for MeHg degradation. Its genome sequence revealed four mer operons containing three merA gene and two merB gene copies, that could be horizontally transferred among distant related genomes by mobile genetic elements. The transcriptomic profiling in the presence of 5 µM MeHg showed that merA and merB genes are within the most expressed genes, although not all mer genes were equally transcribed. Besides, we aimed to identify functional orthologous genes that displayed expression profiles highly similar or identical to those genes within the mer operons, which could indicate they are under the same regulatory controls. We found contrasting expression profiles for each mer operon that were positively correlated with a wide array of functions mostly related to amino acid metabolism, but also to flagellar assembly or two component systems. Also, this study highlights that all merAB genes of the four operons were globally distributed across oceans layers with higher transcriptional activity in the mesopelagic deeper waters. Our study provides new insights about the transcriptional patterns related to the capacity of marine bacteria to detoxify MeHg, with important implications for the understanding of this process in marine ecosystems.


Subject(s)
Alteromonas , Mercury , Methylmercury Compounds , Methylmercury Compounds/metabolism , Ecosystem , Mercury/metabolism , Bacteria/metabolism , Gene Expression Profiling , Genomics
2.
Sci Data ; 11(1): 154, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302528

ABSTRACT

The Ocean microbiome has a crucial role in Earth's biogeochemical cycles. During the last decade, global cruises such as Tara Oceans and the Malaspina Expedition have expanded our understanding of the diversity and genetic repertoire of marine microbes. Nevertheless, there are still knowledge gaps regarding their diversity patterns throughout depth gradients ranging from the surface to the deep ocean. Here we present a dataset of 76 microbial metagenomes (MProfile) of the picoplankton size fraction (0.2-3.0 µm) collected in 11 vertical profiles covering contrasting ocean regions sampled during the Malaspina Expedition circumnavigation (7 depths, from surface to 4,000 m deep). The MProfile dataset produced 1.66 Tbp of raw DNA sequences from which we derived: 17.4 million genes clustered at 95% sequence similarity (M-GeneDB-VP), 2,672 metagenome-assembled genomes (MAGs) of Archaea and Bacteria (Malaspina-VP-MAGs), and over 100,000 viral genomic sequences. This dataset will be a valuable resource for exploring the functional and taxonomic connectivity between the photic and bathypelagic tropical and sub-tropical ocean, while increasing our general knowledge of the Ocean microbiome.


Subject(s)
Metagenome , Plankton , Archaea/genetics , Bacteria/genetics , Oceans and Seas , Plankton/genetics
3.
J Hazard Mater ; 467: 133685, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38335604

ABSTRACT

Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.


Subject(s)
Environmental Pollutants , Mercury , Mercury/toxicity , Mercury/analysis , Bacteria/genetics , Bioreactors
4.
Nat Commun ; 15(1): 126, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168083

ABSTRACT

Microbial interactions are vital in maintaining ocean ecosystem function, yet their dynamic nature and complexity remain largely unexplored. Here, we use association networks to investigate possible ecological interactions in the marine microbiome among archaea, bacteria, and picoeukaryotes throughout different depths and geographical regions of the tropical and subtropical global ocean. Our findings reveal that potential microbial interactions change with depth and geographical scale, exhibiting highly heterogeneous distributions. A few potential interactions were global, meaning they occurred across regions at the same depth, while 11-36% were regional within specific depths. The bathypelagic zone had the lowest proportion of global associations, and regional associations increased with depth. Moreover, we observed that most surface water associations do not persist in deeper ocean layers despite microbial vertical dispersal. Our work contributes to a deeper understanding of the tropical and subtropical global ocean interactome, which is essential for addressing the challenges posed by global change.


Subject(s)
Bacteria , Microbiota , Bacteria/genetics , Archaea/genetics , Microbial Consortia , Oceans and Seas , Seawater/microbiology
5.
J Hazard Mater ; 465: 133120, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38101011

ABSTRACT

Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments.


Subject(s)
Mercury , Microbiota , Mercury/analysis , Geologic Sediments/microbiology , Bacteria/genetics , Sulfur
6.
Sci Adv ; 9(45): eadg9763, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37939185

ABSTRACT

Tiny ocean plankton (picoplankton) are fundamental for the functioning of the biosphere, but the ecological mechanisms shaping their biogeography were partially understood. Comprehending whether these microorganisms are structured by niche versus neutral processes is relevant in the context of global change. We investigate the ecological processes (selection, dispersal, and drift) structuring global-ocean picoplanktonic communities inhabiting the epipelagic (0 to 200 meters), mesopelagic (200 to 1000 meters), and bathypelagic (1000 to 4000 meters) zones. We found that selection decreased, while dispersal limitation increased with depth, possibly due to differences in habitat heterogeneity and dispersal barriers such as water masses and bottom topography. Picoplankton ß-diversity positively correlated with environmental heterogeneity and water mass variability, but this relationship tended to be weaker for eukaryotes than for prokaryotes. Community patterns were more pronounced in the Mediterranean Sea, probably because of its cross-basin environmental heterogeneity and deep-water isolation. We conclude that different combinations of ecological mechanisms shape the biogeography of the ocean microbiome across depths.


Subject(s)
Microbiota , Plankton , Eukaryota , Water , Oceans and Seas
7.
ISME Commun ; 3(1): 92, 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37660234

ABSTRACT

Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.

8.
Microbiome ; 11(1): 118, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37237317

ABSTRACT

BACKGROUND: Viruses play important roles in the ocean's biogeochemical cycles. Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities or how they interact with their free-living or particle-attached microbial hosts. RESULTS: We analysed 58 viral communities associated with size-fractionated free-living (0.2-0.8 µm) and particle-attached (0.8-20 µm) cellular metagenomes from bathypelagic (2150-4018 m deep) microbiomes obtained during the Malaspina expedition. These metagenomes yielded 6631 viral sequences, 91% of which were novel, and 67 represented high-quality genomes. Taxonomic classification assigned 53% of the viral sequences to families of tailed viruses from the order Caudovirales. Computational host prediction associated 886 viral sequences to dominant members of the deep ocean microbiome, such as Alphaproteobacteria (284), Gammaproteobacteria (241), SAR324 (23), Marinisomatota (39), and Chloroflexota (61). Free-living and particle-attached viral communities had markedly distinct taxonomic composition, host prevalence, and auxiliary metabolic gene content, which led to the discovery of novel viral-encoded metabolic genes involved in the folate and nucleotide metabolisms. Water mass age emerged as an important factor driving viral community composition. We postulated this was due to changes in quality and concentration of dissolved organic matter acting on the host communities, leading to an increase of viral auxiliary metabolic genes associated with energy metabolism among older water masses. CONCLUSIONS: These results shed light on the mechanisms by which environmental gradients of deep ocean ecosystems structure the composition and functioning of free-living and particle-attached viral communities. Video Abstract.


Subject(s)
Microbiota , Viruses , Seawater/microbiology , Water , Genes, Viral , Viruses/genetics , Microbiota/genetics , Oceans and Seas
9.
Nat Commun ; 14(1): 1384, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914646

ABSTRACT

Strong purifying selection is considered a major evolutionary force behind small microbial genomes in the resource-poor photic ocean. However, very little is currently known about how the size of prokaryotic genomes evolves in the global ocean and whether patterns reflect shifts in resource availability in the epipelagic and relatively stable deep-sea environmental conditions. Using 364 marine microbial metagenomes, we investigate how the average genome size of uncultured planktonic prokaryotes varies across the tropical and polar oceans to the hadal realm. We find that genome size is highest in the perennially cold polar ocean, reflecting elongation of coding genes and gene dosage effects due to duplications in the interior ocean microbiome. Moreover, the rate of change in genome size due to temperature is 16-fold higher than with depth up to 200 m. Our results demonstrate how environmental factors can influence marine microbial genome size selection and ecological strategies of the microbiome.


Subject(s)
Genome, Microbial , Microbiota , Genome Size , Oceans and Seas , Metagenome/genetics , Seawater
10.
Mol Ecol Resour ; 23(1): 190-204, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35839241

ABSTRACT

Mercury (Hg) methylation genes (hgcAB) mediate the formation of the toxic methylmercury and have been identified from diverse environments, including freshwater and marine ecosystems, Arctic permafrost, forest and paddy soils, coal-ash amended sediments, chlor-alkali plants discharges and geothermal springs. Here we present the first attempt at a standardized protocol for the detection, identification and quantification of hgc genes from metagenomes. Our Hg-cycling microorganisms in aquatic and terrestrial ecosystems (Hg-MATE) database, a catalogue of hgc genes, provides the most accurate information to date on the taxonomic identity and functional/metabolic attributes of microorganisms responsible for Hg methylation in the environment. Furthermore, we introduce "marky-coco", a ready-to-use bioinformatic pipeline based on de novo single-metagenome assembly, for easy and accurate characterization of hgc genes from environmental samples. We compared the recovery of hgc genes from environmental metagenomes using the marky-coco pipeline with an approach based on coassembly of multiple metagenomes. Our data show similar efficiency in both approaches for most environments except those with high diversity (i.e., paddy soils) for which a coassembly approach was preferred. Finally, we discuss the definition of true hgc genes and methods to normalize hgc gene counts from metagenomes.


Subject(s)
Mercury , Mercury/analysis , Metagenome , Methylation , Ecosystem , Consensus , Soil
11.
Mol Ecol Resour ; 23(1): 16-40, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35108459

ABSTRACT

Phytoplankton account for >45% of global primary production, and have an enormous impact on aquatic food webs and on the entire Earth System. Their members are found among prokaryotes (cyanobacteria) and multiple eukaryotic lineages containing chloroplasts. Genetic surveys of phytoplankton communities generally consist of PCR amplification of bacterial (16S), nuclear (18S) and/or chloroplastic (16S) rRNA marker genes from DNA extracted from environmental samples. However, our appreciation of phytoplankton abundance or biomass is limited by PCR-amplification biases, rRNA gene copy number variations across taxa, and the fact that rRNA genes do not provide insights into metabolic traits such as photosynthesis. Here, we targeted the photosynthetic gene psbO from metagenomes to circumvent these limitations: the method is PCR-free, and the gene is universally and exclusively present in photosynthetic prokaryotes and eukaryotes, mainly in one copy per genome. We applied and validated this new strategy with the size-fractionated marine samples collected by Tara Oceans, and showed improved correlations with flow cytometry and microscopy than when based on rRNA genes. Furthermore, we revealed unexpected features of the ecology of these ecosystems, such as the high abundance of picocyanobacterial aggregates and symbionts in the ocean, and the decrease in relative abundance of phototrophs towards the larger size classes of marine dinoflagellates. To facilitate the incorporation of psbO in molecular-based surveys, we compiled a curated database of >18,000 unique sequences. Overall, psbO appears to be a promising new gene marker for molecular-based evaluations of entire phytoplankton communities.


Subject(s)
Metagenome , Phytoplankton , Phytoplankton/genetics , Ecosystem , DNA Copy Number Variations , Oceans and Seas , RNA, Ribosomal, 16S/genetics , Eukaryota/genetics
12.
Article in English | MEDLINE | ID: mdl-35997078

ABSTRACT

Two strains isolated from a sample of activated sludge that was obtained from a seawater-based wastewater treatment plant on the southeastern Mediterranean coast of Spain have been characterized to achieve their taxonomic classification, since preliminary data suggested they could represent novel taxa. Given the uniqueness of this habitat, as this sort of plants are rare in the world and this one used seawater to process an influent containing intermediate products from amoxicillin synthesis, we also explored their ecology and the annotations of their genomic sequences. Analysis of their 16S rRNA gene sequences revealed that one of them, which was orange-pigmented, was distantly related to Vicingus serpentipes (family Vicingaceae) and to other representatives of neighbouring families in the order Flavobacteriales (class Flavobacteriia) by 88-89 % similarities; while the other strain, which was yellow-pigmented, was a putative new species of Lysobacter (family Xanthomonadaceae, order Xanthomonadales, class Gammaproteobacteria) with Lysobacter arseniciresistens as closest relative (97.3 % 16S rRNA sequence similarity to its type strain). Following a polyphasic taxonomic approach, including a genome-based phylogenetic analysis and a thorough phenotypic characterization, we propose the following novel taxa: Parvicella tangerina gen. nov., sp. nov. (whose type strain is AS29M-1T=CECT 30217T=LMG 32344T), Parvicellaceae fam. nov. (whose type genus is Parvicella), and Lysobacter luteus sp. nov. (whose type strain is AS29MT=CECT 30171T=LMG 32343T).


Subject(s)
Flavobacteriaceae , Gammaproteobacteria , Lysobacter , Water Purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Sewage
13.
Nature ; 607(7917): 111-118, 2022 07.
Article in English | MEDLINE | ID: mdl-35732736

ABSTRACT

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Subject(s)
Biosynthetic Pathways , Microbiota , Oceans and Seas , Bacteria/classification , Bacteria/genetics , Biosynthetic Pathways/genetics , Genomics , Microbiota/genetics , Multigene Family/genetics , Phylogeny
14.
Nucleic Acids Res ; 50(W1): W516-W526, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35687095

ABSTRACT

Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Subject(s)
Bacteria , Eukaryota , Marine Biology , Plankton , Bacteria/genetics , Eukaryota/genetics , Metagenome , Phylogeny , Plankton/genetics
15.
Science ; 376(6589): 156-162, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389782

ABSTRACT

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Subject(s)
Genome, Viral , RNA Viruses , Viruses , Biological Evolution , Ecosystem , Oceans and Seas , Phylogeny , RNA , RNA Viruses/genetics , Virome/genetics , Viruses/genetics
16.
Environ Sci Technol ; 56(6): 3452-3461, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35245029

ABSTRACT

Microbial reduction of inorganic divalent mercury (Hg2+) and methylmercury (MeHg) demethylation is performed by the mer operon, specifically by merA and merB genes, respectively, but little is known about the mercury tolerance capacity of marine microorganisms and its prevalence in the ocean. Here, combining culture-dependent analyses with metagenomic and metatranscriptomic data, we show that marine bacteria that encode mer genes are widespread and active in the global ocean. We explored the distribution of these genes in 290 marine heterotrophic bacteria (Alteromonas and Marinobacter spp.) isolated from different oceanographic regions and depths, and assessed their tolerance to diverse concentrations of Hg2+ and MeHg. In particular, the Alteromonas sp. ISS312 strain presented the highest tolerance capacity and a degradation efficiency for MeHg of 98.2% in 24 h. Fragment recruitment analyses of Alteromonas sp. genomes (ISS312 strain and its associated reconstructed metagenome assembled genome MAG-0289) against microbial bathypelagic metagenomes confirm their prevalence in the deep ocean. Moreover, we retrieved 54 merA and 6 merB genes variants related to the Alteromonas sp. ISS312 strain from global metagenomes and metatranscriptomes from Tara Oceans. Our findings highlight the biological reductive MeHg degradation as a relevant pathway of the ocean Hg biogeochemical cycle.


Subject(s)
Mercury , Methylmercury Compounds , Bacteria/genetics , Bacteria/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Oceans and Seas , Prevalence
17.
Elife ; 112022 03 31.
Article in English | MEDLINE | ID: mdl-35356891

ABSTRACT

Genes of unknown function are among the biggest challenges in molecular biology, especially in microbial systems, where 40-60% of the predicted genes are unknown. Despite previous attempts, systematic approaches to include the unknown fraction into analytical workflows are still lacking. Here, we present a conceptual framework, its translation into the computational workflow AGNOSTOS and a demonstration on how we can bridge the known-unknown gap in genomes and metagenomes. By analyzing 415,971,742 genes predicted from 1749 metagenomes and 28,941 bacterial and archaeal genomes, we quantify the extent of the unknown fraction, its diversity, and its relevance across multiple organisms and environments. The unknown sequence space is exceptionally diverse, phylogenetically more conserved than the known fraction and predominantly taxonomically restricted at the species level. From the 71 M genes identified to be of unknown function, we compiled a collection of 283,874 lineage-specific genes of unknown function for Cand. Patescibacteria (also known as Candidate Phyla Radiation, CPR), which provides a significant resource to expand our understanding of their unusual biology. Finally, by identifying a target gene of unknown function for antibiotic resistance, we demonstrate how we can enable the generation of hypotheses that can be used to augment experimental data.


It is estimated that scientists do not know what half of microbial genes actually do. When these genes are discovered in microorganisms grown in the lab or found in environmental samples, it is not possible to identify what their roles are. Many of these genes are excluded from further analyses for these reasons, meaning that the study of microbial genes tends to be limited to genes that have already been described. These limitations hinder research into microbiology, because information from newly discovered genes cannot be integrated to better understand how these organisms work. Experiments to understand what role these genes have in the microorganisms are labor-intensive, so new analytical strategies are needed. To do this, Vanni et al. developed a new framework to categorize genes with unknown roles, and a computational workflow to integrate them into traditional analyses. When this approach was applied to over 400 million microbial genes (both with known and unknown roles), it showed that the share of genes with unknown functions is only about 30 per cent, smaller than previously thought. The analysis also showed that these genes are very diverse, revealing a huge space for future research and potential applications. Combining their approach with experimental data, Vanni et al. were able to identify a gene with a previously unknown purpose that could be involved in antibiotic resistance. This system could be useful for other scientists studying microorganisms to get a more complete view of microbial systems. In future, it may also be used to analyze the genetics of other organisms, such as plants and animals.


Subject(s)
Bacteria , Genome, Archaeal , Bacteria/genetics , Metagenome , Open Reading Frames
18.
Nat Microbiol ; 6(12): 1561-1574, 2021 12.
Article in English | MEDLINE | ID: mdl-34782724

ABSTRACT

The role of the Arctic Ocean ecosystem in climate regulation may depend on the responses of marine microorganisms to environmental change. We applied genome-resolved metagenomics to 41 Arctic seawater samples, collected at various depths in different seasons during the Tara Oceans Polar Circle expedition, to evaluate the ecology, metabolic potential and activity of resident bacteria and archaea. We assembled 530 metagenome-assembled genomes (MAGs) to form the Arctic MAGs catalogue comprising 526 species. A total of 441 MAGs belonged to species that have not previously been reported and 299 genomes showed an exclusively polar distribution. Most Arctic MAGs have large genomes and the potential for fast generation times, both of which may enable adaptation to a copiotrophic lifestyle in nutrient-rich waters. We identified 38 habitat generalists and 111 specialists in the Arctic Ocean. We also found a general prevalence of 14 mixotrophs, while chemolithoautotrophs were mostly present in the mesopelagic layer during spring and autumn. We revealed 62 MAGs classified as key Arctic species, found only in the Arctic Ocean, showing the highest gene expression values and predicted to have habitat-specific traits. The Artic MAGs catalogue will inform our understanding of polar microorganisms that drive global biogeochemical cycles.


Subject(s)
Archaea/genetics , Bacteria/genetics , Seawater/microbiology , Archaea/classification , Archaea/isolation & purification , Arctic Regions , Bacteria/classification , Bacteria/isolation & purification , Ecosystem , Genome, Archaeal , Genome, Bacterial , Metagenome , Phylogeny
19.
Sci Adv ; 7(35)2021 Aug.
Article in English | MEDLINE | ID: mdl-34452910

ABSTRACT

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.

20.
Bioinformatics ; 38(1): 270-272, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34260698

ABSTRACT

Profiling the taxonomic composition of microbial communities commonly involves the classification of ribosomal RNA gene fragments. As a trade-off to maintain high classification accuracy, existing tools are typically limited to the genus level. Here, we present mTAGs, a taxonomic profiling tool that implements the alignment of metagenomic sequencing reads to degenerate consensus reference sequences of small subunit ribosomal RNA genes. It uses DNA fragments, that is, paired-end sequencing reads, as count units and provides relative abundance profiles at multiple taxonomic ranks, including operational taxonomic units based on a 97% sequence identity cutoff. At the genus rank, mTAGs outperformed other tools across several metrics, such as the F1 score by >11% across data from different environments, and achieved competitive (F1 score) or better results (Bray-Curtis dissimilarity) at the sub-genus level. AVAILABILITY AND IMPLEMENTATION: The software tool mTAGs is implemented in Python. The source code and binaries are freely available (https://github.com/SushiLab/mTAGs). The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.4352762. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Microbiota , Software , Genes, rRNA , Consensus , Sequence Analysis, DNA/methods , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...