Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Biofabrication ; 16(3)2024 May 17.
Article in English | MEDLINE | ID: mdl-38701770

ABSTRACT

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products. Using a modern and scalable manufacturing platform, iMonoMac showed typical macrophage-like morphology and stained positive for several Toll like receptor (TLRs) such as TLR-2, TLR-5, TLR-4. Furthermore, iMonoMac derived from the same donor were sensitive to endotoxins, non-endotoxins, and process related pyrogens at a high dynamic range and across different cellular densities. Of note, iMonoMac showed increased sensitivity and reactivity to a broad range of pyrogens, demonstrated by the detection of interleukin-6 at low concentrations of LPS and MALP-2 which could not be reached using the current MAT cell sources. To further advance the system, iMonoMac or genetically engineered iMonoMac with NF-κB-luciferase reporter cassette could reveal a specific activation response while correlating to the classical detection method employing enzyme-linked immunosorbent assay to measure cytokine secretion. Thus, we present a valuable cellular tool to assess parenteral drugs safety, facilitating the future acceptance and design of regulatory-approved bioassays.


Subject(s)
Induced Pluripotent Stem Cells , Macrophages , Pyrogens , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/metabolism , Macrophages/drug effects , Macrophages/cytology , Drug Contamination , Toll-Like Receptors/metabolism , Endotoxins , Interleukin-6/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/drug effects , Infusions, Parenteral
2.
Cell ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.

3.
Methods Mol Biol ; 2713: 463-479, 2024.
Article in English | MEDLINE | ID: mdl-37639142

ABSTRACT

Alveolar macrophages (AMs) represent crucial immune cells in the bronchioalveolar space of the lung. Given the important role in the host defense machinery and lung tissue homeostasis, AMs have been linked to a variety of diseases and thus represent a promising target cell type for novel therapies. The emerging importance of AM underlines the necessity to isolate and/or generate proper cellular models, which facilitate basic biology and translational science. As of yet, most studies focus on the derivation of AM from the murine system. This chapter introduces the use of human-induced pluripotent stem cell (iPSC)-derived primitive macrophages, which can be further matured towards an AM-like phenotype upon intra-pulmonary transfer into mice. We will give a brief overview on the generation of primitive iPSC-derived macrophages, which is followed by a detailed, step-by-step description of the intra-pulmonary transfer of cells and the follow-up procedures needed to isolate the iPSC-derived, AM-like cells from the lungs post-transfer. The chapter provides an alternative approach to derive human AM-like cells, which can be used to study human AM biology and to investigate novel therapeutic interventions using primitive macrophages from iPSC.


Subject(s)
Induced Pluripotent Stem Cells , Macrophages, Alveolar , Humans , Animals , Mice , Disease Models, Animal , Macrophages , Phenotype
4.
J Immunother Cancer ; 11(12)2023 12 22.
Article in English | MEDLINE | ID: mdl-38135346

ABSTRACT

BACKGROUND: Macrophages have recently become attractive therapeutics in cancer immunotherapy. The potential of macrophages to infiltrate and influence solid malignancies makes them promising targets for the chimeric antigen receptor (CAR) technology to redirect their stage of polarization, thus enhancing their anticancer capacities. Given the emerging interest for CAR-macrophages, generation of such cells so far mainly depends on peripheral blood monocytes, which are isolated from the respective donor prior to genetic manipulation. This procedure is time-intensive and cost-intensive, while, in some cases, insufficient monocyte amounts can be recovered from the donor, thus hampering the broad applicability of this technology. Hence, we demonstrate the generation and effectiveness of CAR-macrophages from various stem cell sources using also modern upscaling technologies for next generation immune cell farming. METHODS: Primary human hematopoietic stem and progenitor cells and induced pluripotent stem cells were used to derive anti-CD19 CAR-macrophages. Anticancer activity of the cells was demonstrated in co-culture systems, including primary material from patients with leukemia. Generation of CAR-macrophages was facilitated by bioreactor technologies and single-cell RNA (scRNA) sequencing was used to characterize in-depth response and behavior of CAR-macrophages. RESULTS: Irrespective of the stem-cell source, CAR-macrophages exhibited enhanced and antigen-dependent phagocytosis of CD19+ target cancer cells with increased pro-inflammatory responses. Phagocytic capacity of CAR-macrophages was dependent on target cell CD19 expression levels with superior function of CAR-macrophages against CD19+ cancer cell lines and patient-derived acute lymphocytic leukemia cancer cells. scRNA sequencing revealed CAR-macrophages to be distinct from eGFP control cells after co-culture with target cells, which includes the activation of pro-inflammatory pathways and upregulation of chemokines and cytokines associated with adaptive immune cell recruitment, favoring the repolarization of CAR-macrophages to a pro-inflammatory state. Taken together, the data highlight the unique features of CAR-macrophages in combination with the successful upscaling of the production pipeline using a three-dimensional differentiation protocol and intermediate scale bioreactors. CONCLUSION: In summary, our work provides insights into the seminal use and behavior of CAR-macrophages which are derived from various sources of stem cells, while introducing a unique technology for CAR-macrophage manufacturing, all dedicated to the clinical translation of CAR-macrophages within the field of anticancer immunotherapies.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia , Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell , Induced Pluripotent Stem Cells/metabolism , T-Lymphocytes , Leukemia/therapy , Macrophages/metabolism
5.
iScience ; 26(4): 106475, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37096049

ABSTRACT

Chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in most people with cystic fibrosis (CF) sustained by neutrophils as the major drivers of lung inflammation, damage, and remodeling. Phagocytosis assays were performed with clonal consortia of longitudinal P. aeruginosa airway isolates collected from people with CF since the onset of lung colonization until patient's death or replacement by another clone. The extra- and intracellular abundance of individual strains was assessed by deep amplicon sequencing of strain-specific single nucleotide variants in the bacterial genome. The varied microevolution of the accessory genome of the P. aeruginosa clones during mild and severe courses of infection corresponded with a differential persistence of clonal progeny in the neutrophil phagosome. By simultaneously exposing the ancestor and its progeny to the same habitat, the study recapitulated the time lapse of the temporal change of the fitness of the clone to survive in neutrophils.

6.
Mol Ther Methods Clin Dev ; 26: 84-94, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35795779

ABSTRACT

Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.

7.
Nat Protoc ; 17(2): 513-539, 2022 02.
Article in English | MEDLINE | ID: mdl-35039668

ABSTRACT

Macrophages derived from human induced pluripotent stem cells (iPSCs) have the potential to enable the development of cell-based therapies for numerous disease conditions. We here provide a detailed protocol for the mass production of iPSC-derived macrophages (iPSC-Mac) in scalable suspension culture on an orbital shaker or in stirred-tank bioreactors (STBRs). This strategy is straightforward, robust and characterized by the differentiation of primed iPSC aggregates into 'myeloid-cell-forming-complex' intermediates by means of a minimal cytokine cocktail. In contrast to the 'batch-like differentiation approaches' established for other iPSC-derived lineages, myeloid-cell-forming-complex-intermediates are stably maintained in suspension culture and continuously generate functional and highly pure iPSC-Mac. Employing a culture volume of 120 ml in the STBR platform, ~1-4 × 107 iPSC-Mac can be harvested at weekly intervals for several months. The STBR technology allows for real-time monitoring of crucial process parameters such as biomass, pH, dissolved oxygen, and nutrition levels; the system also promotes systematic process development, optimization and linear upscaling. The process duration, from the expansion of iPSC until the first iPSC-Mac harvest, is 28 d. Successful application of the protocol requires expertise in pluripotent stem cell culture, differentiation and analytical methods, such as flow cytometry. Fundamental know-how in biotechnology is also advantageous to run the process in the STBR platform. The continuous, scalable production of well-defined iPSC-Mac populations is highly relevant to various fields, ranging from developmental biology, immunology and cell therapies to industrial applications for drug safety and discovery.


Subject(s)
Induced Pluripotent Stem Cells
8.
Blood Adv ; 5(23): 5190-5201, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34649271

ABSTRACT

Primary or secondary immunodeficiencies are characterized by disruption of cellular and humoral immunity. Respiratory infections are a major cause of morbidity and mortality among immunodeficient or immunocompromised patients, with Staphylococcus aureus being a common offending organism. We propose here an adoptive macrophage transfer approach aiming to enhance impaired pulmonary immunity against S aureus. Our studies, using human-induced pluripotent stem cell-derived macrophages (iMφs), demonstrate efficient antimicrobial potential against methicillin-sensitive and methicillin-resistant clinical isolates of S aureus. Using an S aureus airway infection model in immunodeficient mice, we demonstrate that the adoptive transfer of iMφs is able to reduce the bacterial load more than 10-fold within 20 hours. This effect was associated with reduced granulocyte infiltration and less damage in lung tissue of transplanted animals. Whole transcriptome analysis of iMφs compared with monocyte-derived macrophages indicates a more profound upregulation of inflammatory genes early after infection and faster normalization 24 hours postinfection. Our data demonstrate high therapeutic efficacy of iMφ-based immunotherapy against S aureus infections and offer an alternative treatment strategy for immunodeficient or immunocompromised patients.


Subject(s)
Induced Pluripotent Stem Cells , Respiratory Tract Infections , Staphylococcal Infections , Animals , Humans , Macrophages , Mice , Staphylococcal Infections/therapy , Staphylococcus aureus
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33804918

ABSTRACT

Macrophages act as immune scavengers and are important cell types in the homeostasis of various tissues. Given the multiple roles of macrophages, these cells can also be found as tissue resident macrophages tightly integrated into a variety of tissues in which they fulfill crucial and organ-specific functions. The lung harbors at least two macrophage populations: interstitial and alveolar macrophages, which occupy different niches and functions. In this review, we provide the latest insights into the multiple roles of alveolar macrophages while unraveling the distinct factors which can influence the ontogeny and function of these cells. Furthermore, we will highlight pulmonary diseases, which are associated with dysfunctional macrophages, concentrating on congenital diseases as well as pulmonary infections and impairment of immunological pathways. Moreover, we will provide an overview about different treatment approaches targeting macrophage dysfunction. Improved knowledge of the role of macrophages in the onset of pulmonary diseases may provide the basis for new pharmacological and/or cell-based immunotherapies and will extend our understanding to other macrophage-related disorders.


Subject(s)
Macrophages, Alveolar/metabolism , Pulmonary Alveolar Proteinosis/metabolism , Animals , Homeostasis , Humans , Pulmonary Alveolar Proteinosis/pathology , Pulmonary Surfactants/metabolism
10.
J Crohns Colitis ; 15(9): 1588-1595, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-33596307

ABSTRACT

BACKGROUND AND AIMS: Mutations in IL10 or the IL10 receptor lead to very early onset [VEO] inflammatory bowel disease [IBD], a life-threatening disease which is often unresponsive to conventional medication. Recent studies have demonstrated that defective IL-10 receptor signalling in innate immune cells is a key driver of severe intestinal inflammation in VEO-IBD. Specifically, IL10 unresponsiveness of macrophages, which govern the tight balance between pro- and anti-inflammatory responses in the intestinal system, plays a central role in the events leading to excessive inflammatory responses and the development of IBD. METHODS AND RESULTS: We here evaluated haematopoietic stem cell gene therapy in a VEO-IBD mouse model and demonstrated that the therapeutic response closely correlates with gene correction of the IL10 signalling pathway in intestinal macrophages. This finding prompted us to evaluate the therapeutic efficacy of macrophage transplantation in the Il10rb-/- VEO-IBD mouse model. A 6-week regimen employing a combination of depletion of endogenous hyperinflammatory macrophages followed by intraperitoneal administration of wild-type [WT] macrophages significantly reduced colitis symptoms. CONCLUSIONS: In summary, we show that the correction of the IL10 receptor defect in macrophages, either by genetic therapy or transfer of WT macrophages to the peritoneum, can ameliorate disease-related symptoms and potentially represent novel treatment approaches for VEO-IBD patients.


Subject(s)
Adoptive Transfer , Inflammatory Bowel Diseases/physiopathology , Inflammatory Bowel Diseases/therapy , Interleukin-10 Receptor beta Subunit/physiology , Macrophages/transplantation , Animals , Disease Models, Animal , Inflammatory Bowel Diseases/etiology , Mice
11.
Haematologica ; 106(5): 1354-1367, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32327499

ABSTRACT

Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development.


Subject(s)
Induced Pluripotent Stem Cells , Interleukin-3 , Pluripotent Stem Cells , Adult , Cell Differentiation , Hematopoiesis , Humans
12.
Mol Ther ; 29(3): 1324-1334, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33279724

ABSTRACT

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to impaired ion transport in epithelial cells. Although lung failure due to chronic infection is the major comorbidity in individuals with cystic fibrosis, the role of CFTR in non-epithelial cells has not been definitively resolved. Given the important role of host defense cells, we evaluated the Cftr deficiency in pulmonary immune cells by hematopoietic stem cell transplantation in cystic fibrosis mice. We transplanted healthy bone marrow stem cells and could reveal a stable chimerism of wild-type cells in peripheral blood. The outcome of stem cell transplantation and the impact of healthy immune cells were evaluated in acute Pseudomonas aeruginosa airway infection. In this study, mice transplanted with wild-type cells displayed better survival, lower lung bacterial numbers, and a milder disease course. This improved physiology of infected mice correlated with successful intrapulmonary engraftment of graft-derived alveolar macrophages, as seen by immunofluorescence microscopy and flow cytometry of graft-specific leucocyte surface marker CD45 and macrophage marker CD68. Given the beneficial effect of hematopoietic stem cell transplantation and stable engraftment of monocyte-derived CD68-positive macrophages, we conclude that replacement of mutant Cftr macrophages attenuates airway infection in cystic fibrosis mice.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Hematopoietic Stem Cell Transplantation/methods , Macrophages/immunology , Mutation , Pseudomonas Infections/therapy , Pseudomonas aeruginosa/isolation & purification , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Epithelial Cells/microbiology , Humans , Lung/microbiology , Macrophages/microbiology , Mice , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology
13.
Mol Ther Methods Clin Dev ; 17: 785-795, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32355867

ABSTRACT

Autosomal recessive (AR) complete interferon-γ receptor 1 (IFN-γR1) deficiency, also known as one genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD), is a life-threatening congenital disease leading to premature death. Affected patients present a pathognomonic predisposition to recurrent and severe infections with environmental mycobacteria or the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine. Current therapeutic options are limited to antibiotic treatment and hematopoietic stem cell transplantation, however with poor outcome. Given the clinical success of gene therapy, we introduce the first lentiviral-based gene therapy approach to restore expression and function of the human IFN-γR-downstream signaling cascade. In our study, we developed lentiviral vectors constitutively expressing the human IFN-γR1 and demonstrate stable transgene expression without interference with cell viability and proliferation in transduced human hematopoietic cells. Using an IFN-γR1-deficient HeLa cell model, we show stable receptor reconstitution and restored IFN-γR1 signaling without adverse effect on cell functionality. Transduction of both SV40-immortalized and primary fibroblasts derived from IFN-γR1-deficient MSMD patients was able to recover IFN-γR1 expression and restore type II IFN signaling upon stimulation with IFN-γ. In summary, we highlight lentiviral vectors to correct the IFN-γ mediated immunity and present the first gene therapy approach for patients suffering from AR complete IFN-γR1 deficiency.

14.
Int J Mol Sci ; 21(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260086

ABSTRACT

Induced pluripotent stem cells (iPSCs) offer great promise for the field of regenerative medicine, and iPSC-derived cells have already been applied in clinical practice. However, potential contamination of effector cells with residual pluripotent cells (e.g., teratoma-initiating cells) or effector cell-associated side effects may limit this approach. This also holds true for iPSC-derived hematopoietic cells. Given the therapeutic benefit of macrophages in different disease entities and the feasibility to derive macrophages from human iPSCs, we established human iPSCs harboring the inducible Caspase-9 (iCasp9) suicide safety switch utilizing transcription activator-like effector nuclease (TALEN)-based designer nuclease technology. Mono- or bi-allelic integration of the iCasp9 gene cassette into the AAVS1 locus showed no effect on the pluripotency of human iPSCs and did not interfere with their differentiation towards macrophages. In both, iCasp9-mono and iCasp9-bi-allelic clones, concentrations of 0.1 nM AP20187 were sufficient to induce apoptosis in more than 98% of iPSCs and their progeny-macrophages. Thus, here we provide evidence that the introduction of the iCasp9 suicide gene into the AAVS1 locus enables the effective clearance of human iPSCs and thereof derived macrophages.


Subject(s)
Caspase 9/genetics , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Caspase 9/metabolism , Cell Differentiation/drug effects , Cell Line , Genes, Transgenic, Suicide , Humans , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Regenerative Medicine , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology
15.
Transfus Med Hemother ; 47(6): 444-453, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33442339

ABSTRACT

Antigen-presenting cells (APCs), such as dendritic cells (DCs) and macrophages, are important regulators of the immune system, as they connect the innate and adaptive immunity by critically regulating T-cell responses. Thus, APCs are involved in both tissue homeostasis and tolerance, but also coordinate immune responses in case of infection and inflammation. Primary APCs are commonly generated from peripheral blood-derived monocytes and have been used as cell therapeutics in several (pre-)clinical settings, e.g., immune oncology, however, with varying efficiency. One promising alternative to study antigen presentation in vitro and to develop novel cell-based therapies are induced pluripotent stem cells (iPSCs). IPSCs can nowadays be generated from a variety of different cell types using several refined reprogramming techniques. Given their unlimited proliferation and differentiation potential, they hold great promise for regenerative medicine, and recently, first iPSC derivatives have found their way into first clinical studies for cell-based therapies. In this review article, we will give a brief overview of current methods for the generation and applications of primary APCs, but also specifically focus on different strategies for the generation of defined subsets of DCs and macrophages from human PSCs. Moreover, we will highlight the potential but also hurdles for the clinical translation of iPSC-derived APCs.

16.
Stem Cells Dev ; 28(23): 1540-1551, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31595840

ABSTRACT

Red blood cell (RBC) differentiation from human induced pluripotent stem cells (hiPSCs) offers great potential for developmental studies and innovative therapies. However, ex vivo erythropoiesis from hiPSCs is currently limited by low efficiency and unphysiological conditions of common culture systems. Especially, the absence of a physiological niche may impair cell growth and lineage-specific differentiation. We here describe a simplified, xeno- and feeder-free culture system for prolonged RBC generation that uses low numbers of supporting cytokines [stem cell factor (SCF), erythropoietin (EPO), and interleukin 3 (IL-3)] and is based on the intermediate development of a "hematopoietic cell forming complex (HCFC)." From this HCFC, CD43+ hematopoietic cells (purity >95%) were continuously released into the supernatant and could be collected repeatedly over a period of 6 weeks for further erythroid differentiation. The released cells were mainly CD34+/CD45+ progenitors with high erythroid colony-forming potential and CD36+ erythroid precursors. A total of 1.5 × 107 cells could be harvested from the supernatant of one six-well plate, showing 100- to 1000-fold amplification during subsequent homogeneous differentiation into GPA+ erythroid cells. Mean enucleation rates near 40% (up to 60%) further confirmed the potency of the system. These benefits may be explained by the generation of a niche within the HCFC that mimics the spatiotemporal signaling of the physiological microenvironment in which erythropoiesis occurs. Compared to other protocols, this method provides lower complexity, less cytokine and medium consumption, higher cellular output, and better enucleation. In addition, slight modifications in cytokine addition shift the system toward continuous generation of granulocytes and macrophages.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/genetics , Erythroid Cells/cytology , Induced Pluripotent Stem Cells/cytology , CD36 Antigens/genetics , Cell Lineage/genetics , Cellular Microenvironment/genetics , Cytokines/genetics , Erythrocytes/cytology , Erythropoiesis/genetics , Hematopoietic Stem Cells/cytology , Humans , Leukosialin/genetics
17.
Stem Cells Transl Med ; 8(4): 332-339, 2019 04.
Article in English | MEDLINE | ID: mdl-30585439

ABSTRACT

Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have opened up a world of possibilities for regenerative medicine and novel cell-based therapeutics. Now, over a decade later, robust reprogramming and expansion and differentiation protocols have been developed, and iPSC-derived cells have been used in a wide variety of small and large animal models to treat many different diseases. Furthermore, the first iPSC derivatives are on their way into clinical trials. In this line, (i) GMP-compliant generation, cultivation, and differentiation, (ii) preclinical efficacy and safety, as well as (iii) ethical and regulatory compliance of stem cell research represent important aspects that need to be evaluated for proper clinical translation of iPSCs and their derivatives. In this review article, we provide an overview of the current advances and challenges of the clinical translation of iPSC-derived blood cells and highlight the most pressing problems that have to be overcome in the next years. Stem Cells Translational Medicine 2019;8:332-339.


Subject(s)
Blood Cells/cytology , Induced Pluripotent Stem Cells/cytology , Animals , Cell Differentiation/physiology , Humans , Regenerative Medicine/methods
18.
Nat Commun ; 9(1): 5088, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504915

ABSTRACT

The increasing number of severe infections with multi-drug-resistant pathogens worldwide highlights the need for alternative treatment options. Given the pivotal role of phagocytes and especially alveolar macrophages in pulmonary immunity, we introduce a new, cell-based treatment strategy to target bacterial airway infections. Here we show that the mass production of therapeutic phagocytes from induced pluripotent stem cells (iPSC) in industry-compatible, stirred-tank bioreactors is feasible. Bioreactor-derived iPSC-macrophages (iPSC-Mac) represent a highly pure population of CD45+CD11b+CD14+CD163+ cells, and share important phenotypic, functional and transcriptional hallmarks with professional phagocytes, however with a distinct transcriptome signature similar to primitive macrophages. Most importantly, bioreactor-derived iPSC-Mac rescue mice from Pseudomonas aeruginosa-mediated acute infections of the lower respiratory tract within 4-8 h post intra-pulmonary transplantation and reduce bacterial load. Generation of specific immune-cells from iPSC-sources in scalable stirred-tank bioreactors can extend the field of immunotherapy towards bacterial infections, and may allow for further innovative cell-based treatment strategies.


Subject(s)
Bacterial Infections/prevention & control , Bioreactors , Immunotherapy/methods , Induced Pluripotent Stem Cells/cytology , Macrophages/cytology , Respiratory Tract Infections/prevention & control , Animals , Bacterial Infections/immunology , Cell Culture Techniques , Humans , Macrophages/physiology , Mice , Microscopy, Electron, Scanning , Pseudomonas aeruginosa/pathogenicity , Respiratory Tract Infections/immunology
19.
Sci Rep ; 8(1): 16281, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389997

ABSTRACT

Macrophages are key cells of the innate immune system and act as tissue resident macrophages (TRMs) in the homeostasis of various tissues. Given their unique functions and therapeutic use as well as the feasibility to derive macrophages in vitro from hematopoietic stem cell (HSC) sources, we propose an "easy-to-use" immune cell spray (ICS) formulation to effectively deliver HSC-derived macrophages. To achieve this aim, we used classical pump spray devices to spray either the human myeloid cell line U937 or primary murine HSC-derived macrophages. For both cell types used, one puff could deliver cells with maintained morphology and functionality. Of note, cells tolerated the spraying process very well with a recovery of more than 90%. In addition, we used osmotic preconditioning to reduce the overall cell size of macrophages. While a 800 mosm hyperosmolar sucrose solution was able to reduce the cell size by 27%, we identified 600 mosm to be effective to reduce the cell size by 15% while maintaining macrophage morphology and functionality. Using an isolated perfused rat lung preparation, the combinatorial use of the ICS with preconditioned and genetically labeled U937 cells allowed the intra-pulmonary delivery of cells, thus paving the way for a new cell delivery platform.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Macrophages/transplantation , Monocytes/transplantation , Animals , Cell Differentiation , Cell- and Tissue-Based Therapy/instrumentation , Feasibility Studies , Hematopoietic Stem Cells/physiology , Humans , K562 Cells , Lung , Macrophages/physiology , Mice , Monocytes/physiology , Osmosis , Perfusion , Primary Cell Culture/methods , Rats , U937 Cells
20.
Stem Cell Reports ; 11(3): 696-710, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30100408

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5-4 × 106 iPSC-Mφ yields efficient airway residence with conversion of iPSC-Mφ to an alveolar macrophage (AMφ) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-Mφ as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AMφ phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes.


Subject(s)
Cytokine Receptor Common beta Subunit/genetics , Induced Pluripotent Stem Cells/cytology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/transplantation , Pulmonary Alveolar Proteinosis/therapy , Animals , Cells, Cultured , Gene Deletion , Hematopoiesis , Mice , Mice, Knockout , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...