Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Hum Evol ; 174: 103296, 2023 01.
Article in English | MEDLINE | ID: mdl-36527977

ABSTRACT

The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.


Subject(s)
Biological Evolution , Genetic Drift , Humans , Selection, Genetic
2.
Sci Rep ; 12(1): 12516, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35869137

ABSTRACT

Afro-Eurasian monkeys originated in the Miocene and are the most species-rich modern primate family. Molecular and fossil data have provided considerable insight into their evolutionary divergence, but we know considerably less about the evolutionary processes that underlie these differences. Here, we apply tests developed from quantitative genetics theory to a large (n > 3000) cranio-mandibular morphometric dataset, investigating the relative importance of adaptation (natural selection) and neutral processes (genetic drift) in shaping diversity at different taxonomic levels, an approach applied previously to monkeys of the Americas, apes, hominins, and other vertebrate taxa. Results indicate that natural selection, particularly for differences in size, plays a significant role in diversifying Afro-Eurasian monkeys as a whole. However, drift appears to better explain skull divergence within the subfamily Colobinae, and in particular the African colobine clade, likely due to habitat fragmentation. Small and declining population sizes make it likely that drift will continue in this taxon, with potentially dire implications for genetic diversity and future resilience in the face of environmental change. For the other taxa, many of whom also have decreasing populations and are threatened, understanding adaptive pressures similarly helps identify relative vulnerability and may assist with prioritising scarce conservation resources.


Subject(s)
Colobinae , Hominidae , Animals , Biological Evolution , Genetic Drift , Genetic Variation , Selection, Genetic , Skull
3.
J Morphol ; 282(12): 1745-1764, 2021 12.
Article in English | MEDLINE | ID: mdl-34609013

ABSTRACT

The increasing awareness that hybridization, and resultant gene flow, plays a major role in animal diversification has led to a growing number of studies that have focused on assessing the morphological consequences of this process. Analyses of mammalian hybrids have identified skeletal effects of hybridization, including a suite of anomalous dental and sutural traits on the skull that are present at high frequencies in hybrid populations. These studies have also detected consistent patterns of morphological shape and size differences between hybrids and parental taxa across a wide variety of organisms. However, more research is required to understand the universality of these traits and shape/size differences. Building on these previous studies, a sample of genetically determined canid hybrids was examined, specifically the eastern coyote (Canis latrans var.), a hybrid between coyotes, wolves, and dogs, to test whether this group exhibits a comparable pattern of anomalous nonmetric characters, and to assess differences in craniomandibular shape and size. First, specimens of C. latrans var., C. latrans, and C. lupus were scored for anomalous traits, including supernumerary and rotated teeth, dental crowding, and sutural anomalies. Geometric morphometric analyses were then conducted on a subset of these individuals to explore craniomandibular size and shape variation, as well as allometry. The results are largely consistent with other studies, indicating that the incidence of dental anomalies, dental crowding, and sutural anomalies is significantly higher in hybrids. However, differences are not significant for supernumerary teeth. The exploration of morphometric variation identifies intermediate morphology in the hybrids, and some indication of greater morphological variability in the mandible. When these results are combined with previous studies, they suggest that skeletal signatures of hybridization are common to different mammalian taxa across multiple generations; however, some traits such as supernumerary teeth may be lost after a few generations.


Subject(s)
Coyotes , Wolves , Animals , Coyotes/genetics , Dogs , Hybridization, Genetic , Phenotype , Skull
4.
J Hum Evol ; 159: 103049, 2021 10.
Article in English | MEDLINE | ID: mdl-34455262

ABSTRACT

Ancient DNA analyses have shown that interbreeding between hominin taxa occurred multiple times. Although admixture is often reflected in skeletal phenotype, the relationship between the two remains poorly understood, hampering interpretation of the hominin fossil record. Direct study of this relationship is often impossible due to the paucity of hominin fossils and difficulties retrieving ancient genetic material. Here, we use a sample of known ancestry hybrids between two closely related nonhuman primate taxa (Indian and Chinese Macaca mulatta) to investigate the effect of admixture on skeletal morphology. We focus on pelvic shape, which has potential fitness implications in hybrids, as mismatches between maternal pelvic and fetal cranial morphology are often fatal to mother and offspring. As the pelvis is also one of the skeletal regions that differs most between Homo sapiens and Neanderthals, investigating the pelvic consequences of interbreeding could be informative regarding the viability of their hybrids. We find that the effect of admixture in M. mulatta is small and proportional to the relatively small morphological difference between the parent taxa. Sexual dimorphism appears to be the main determinant of pelvic shape in M. mulatta. The lack of difference in pelvic shape between Chinese and Indian M. mulatta is in contrast to that between Neanderthals and H. sapiens, despite a similar split time (in generations) between the hybridizing pairs. Greater phenotypic divergence between hominins may relate to adaptations to disparate environments but may also highlight how the unique degree of cultural buffering in hominins allowed for greater neutral divergence. In contrast to some previous work identifying extreme morphologies in first- and second-generation hybrids, here the relationship between pelvic shape and admixture is linear. This linearity may be because most sampled animals have a multigenerational admixture history or because of relatively high constraints on the pelvis compared with other skeletal regions.


Subject(s)
Hominidae , Neanderthals , Animals , Biological Evolution , Fossils , Macaca , Pelvis
6.
8.
J Hum Evol ; 116: 57-74, 2018 03.
Article in English | MEDLINE | ID: mdl-29477182

ABSTRACT

Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F1) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record.


Subject(s)
Hominidae/anatomy & histology , Hominidae/physiology , Hybridization, Genetic , Mice/anatomy & histology , Mice/physiology , Models, Animal , Animals , Biological Evolution , Body Size/genetics , Fossils/anatomy & histology , Hominidae/genetics , Mandible/anatomy & histology , Mice/genetics , Phenotype , Skull/anatomy & histology
9.
J Hum Evol ; 111: 1-17, 2017 10.
Article in English | MEDLINE | ID: mdl-28874264

ABSTRACT

Recent fossil finds have highlighted extensive morphological diversity within our genus, Homo, and the co-existence of a number of species. However, little is known about the evolutionary processes responsible for producing this diversity. Understanding the action of these processes can provide insight into how and why our lineage evolved and diversified. Here, we examine cranial and mandibular variation and diversification from the earliest emergence of our genus at 2.8 Ma until the Late Pleistocene (0.126-0.0117 Ma), using statistical tests developed from quantitative genetics theory to evaluate whether stochastic (genetic drift) versus non-stochastic (selection) processes were responsible for the observed variation. Results show that random processes can account for species diversification for most traits, including neurocranial diversification, and across all time periods. Where selection was found to shape diversification, we show that: 1) adaptation was important in the earliest migration of Homo out of Africa; 2) selection played a role in shaping mandibular and maxillary diversity among Homo groups, possibly due to dietary differences; and 3) Homo rudolfensis is adaptively different from other early Homo taxa, including the earliest known Homo specimen. These results show that genetic drift, and, likely, small population sizes were important factors shaping the evolution of Homo and many of its novel traits, but that selection played an essential role in driving adaptation to new contexts.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Genetic Drift , Skull/anatomy & histology , Africa , Humans , Mandible/anatomy & histology
10.
J Hum Evol ; 94: 134-45, 2016 05.
Article in English | MEDLINE | ID: mdl-27178465

ABSTRACT

Hybridization is increasingly proving to be an important force shaping human evolution. Comparisons of both ancient and modern genomes have provided support for a complex evolutionary scenario over the past million years, with evidence for multiple incidents of gene exchange. However, to date, genetic evidence is still limited in its ability to pinpoint the precise time and place of ancient admixture. For that we must rely on evidence of admixture from the skeleton. The research presented here builds on previous work on the crania of baboon hybrids, focusing on the nasal cavity of olive baboons, yellow baboons, and first generation (F1) hybrids. The nasal cavity is a particularly important anatomical region for study, given the clear differentiation of this feature in Neanderthals relative to their contemporaries, and therefore it is a feature that will likely differ in a distinctive manner in hybrids of these taxa. Metric data consist of 45 linear, area, and volume measurements taken from CT scans of known-pedigree baboon crania. Results indicate that there is clear evidence for differences among the nasal cavities of the parental taxa and their F1 hybrids, including a greater degree of sexual dimorphism in the hybrids. There is also some evidence for transgressive phenotypes in individual F1 animals. The greatest amount of shape variation occurs in the anterior bony cavity, the choana, and the mid-nasopharynx. Extrapolating our results to the fossil record, we would expect F1 hybrid fossils to have larger nasal cavities, on average, than either parental taxon, with overall nasal cavity shape showing the most profound changes in regions that are distinct between the parental taxa (e.g., anterior nasal cavity). We also expect size and shape differences to be more pronounced in male F1 hybrids than in females. Because of pronounced anterior nasal cavity differences between Neanderthals and their contemporaries, we suggest that this model might be effective for examining the fossil record of late Pleistocene contact.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Hybridization, Genetic , Nasal Cavity/anatomy & histology , Papio/anatomy & histology , Animals , Anthropology, Physical , Biological Evolution , Female , Humans , Male , Papio/genetics , Phenotype
11.
PLoS One ; 10(5): e0123207, 2015.
Article in English | MEDLINE | ID: mdl-25970269

ABSTRACT

Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Speciation , Papio ursinus/genetics , Papio/genetics , Africa, Southern , Animals , Biodiversity , Climate , DNA, Mitochondrial/history , Female , History, Ancient , Male , Papio/classification , Papio ursinus/classification , Phylogeny , Phylogeography/history , Temperature
13.
Am J Phys Anthropol ; 155(1): 33-44, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24789680

ABSTRACT

The present report follows up on the findings of previous research, including recent bioarchaeological study of well-dated Khoesan skeletal remains, that posits long term biological continuity among the indigenous peoples of South Africa after the Pleistocene. The Arizona State University Dental Anthropology System was used to record key crown, root, and intraoral osseous nonmetric traits in six early-through-late Holocene samples from the Cape coasts. Based on these data, phenetic affinities and an identification of traits most important in driving intersample variation were determined using principal components analysis and the mean measure of divergence distance statistic. To expand biological affinity comparisons into more recent times, and thus preliminarily assess the dental impact of disproportionate non-Khoesan gene flow into local peoples, dental data from historic Khoekhoe and San were also included. Results from the prehistoric comparisons are supportive of population continuity, though a sample from Matjes River Rockshelter exhibits slight phenetic distance from other early samples. This and some insignificant regional divergence among these coastal samples may be related to environmental and cultural factors that drove low-level reproductive isolation. Finally, a close affinity of historic San to all samples, and a significant difference of Khoekhoe from most early samples is reflective of documented population history following immigration of Bantu-speakers and, later, Europeans into South Africa.


Subject(s)
Black People , Tooth/anatomy & histology , Black People/history , Black People/statistics & numerical data , History, Ancient , Humans , Odontometry , Paleodontology , South Africa , Tooth Crown/anatomy & histology , Tooth Root/anatomy & histology
14.
Homo ; 63(4): 245-57, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22695253

ABSTRACT

SK 847 and StW 53 have often been cited as evidence for early Homo in South Africa. To examine whether midfacial morphology is in agreement with these attributions, we analyze Euclidean distances calculated from 3-D coordinates on the maxillae of SK 847 and StW 53, as well as Australopithecus africanus (Sts 5, Sts 71), Paranthropus robustus (SK 46, SK 48, SK 52, SK 83), early Homo (KNM-ER 1813, KNM-ER 1805, KNM-ER 3733, KNM-WT 15000), P. boisei (KNM-ER 406, KNM-WT 17000, KNM-WT 17400), Gorilla gorilla (n=116), Homo sapiens (n=342), Pan paniscus (n=21) and P. troglodytes (n=65). Multivariate analyses separate extant hominoids suggesting we have captured taxonomic affinity. With the exception of SK 847 and SK 52, South African fossils tend to cluster together. P. robustus differs substantially from East African robust megadonts. SK 847 and StW 53 resemble the East African Homo specimens that are the most australopith-like, such as KNM-WT 15000 and KNM-ER 1813. The resemblance between StW 53 and Homo is driven partly by similarities in maxillary size. When distances are scaled, StW 53 aligns with A. africanus, while SK 847 clusters primarily with early Homo.


Subject(s)
Face/anatomy & histology , Fossils , Hominidae/anatomy & histology , Maxilla/anatomy & histology , Animals , Gorilla gorilla/anatomy & histology , Humans , Multivariate Analysis , Pan paniscus/anatomy & histology , Pan troglodytes/anatomy & histology , South Africa
15.
Evolution ; 64(1): 271-90, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19804402

ABSTRACT

Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.


Subject(s)
Gorilla gorilla/classification , Hybridization, Genetic , Animals , DNA/genetics , Gene Flow , Gorilla gorilla/genetics , Skull/anatomy & histology
16.
Am J Phys Anthropol ; 140(1): 1-18, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19208416

ABSTRACT

Various methodological approaches have been used for reconstructing fossil hominin remains in order to increase sample sizes and to better understand morphological variation. Among these, morphometric quantitative techniques for reconstruction are increasingly common. Here we compare the accuracy of three approaches--mean substitution, thin plate splines, and multiple linear regression--for estimating missing landmarks of damaged fossil specimens. Comparisons are made varying the number of missing landmarks, sample sizes, and the reference species of the population used to perform the estimation. The testing is performed on landmark data from individuals of Homo sapiens, Pan troglodytes and Gorilla gorilla, and nine hominin fossil specimens. Results suggest that when a small, same-species fossil reference sample is available to guide reconstructions, thin plate spline approaches perform best. However, if no such sample is available (or if the species of the damaged individual is uncertain), estimates of missing morphology based on a single individual (or even a small sample) of close taxonomic affinity are less accurate than those based on a large sample of individuals drawn from more distantly related extant populations using a technique (such as a regression method) able to leverage the information (e.g., variation/covariation patterning) contained in this large sample. Thin plate splines also show an unexpectedly large amount of error in estimating landmarks, especially over large areas. Recommendations are made for estimating missing landmarks under various scenarios.


Subject(s)
Fossils , Hominidae/anatomy & histology , Paleontology/methods , Skull/anatomy & histology , Animals , Gorilla gorilla/anatomy & histology , Hominidae/classification , Humans , Linear Models , Pan troglodytes/anatomy & histology , Regression Analysis
17.
Am J Phys Anthropol ; 135(2): 121-35, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17941102

ABSTRACT

Three sympatric fossil cercopithecoid genera (Cercopithecoides, Parapapio, and Theropithecus) occur in Members 3 and 4 at the Makapansgat Limeworks hominin locality, South Africa, and their presence in a single ecosystem suggest a certain degree of ecological and/or dietary differentiation between taxa. Here, we explore the extent of dietary niche separation amongst these taxa using stable isotope (13C/12C, 18O/16O) and trace-element (Sr, Ba, Ca) analyses of fossil tooth enamel. In particular we searched for evidence of subtle niche separation between the more closely related, morphologically similar taxa of the genus Parapapio, as uncertainties exist around their taxonomy and taxonomic identification. Given these uncertainties, craniometric analyses were also performed to ground the dietary interpretations in a morphological context. The results found no clear taxonomic signal in the craniometric data for the Parapapio sample, and further indicate that this sample was no more variable morphologically than a single, geographically circumscribed, extant chacma baboon sample. In contrast, two overlapping dietary ecologies were found within this same Makapansgat Parapapio sample. Additionally, two widely differing dietary ecologies were found within the Cercopithecoides williamsi sample, while results for Theropithecus darti indicate a predominantly C4 diet. Hence, although biogeochemical dietary indicators point towards distinct dietary ecologies within and between fossil genera at Makapansgat, within the genus Parapapio disjunctions exist between the dietary categories and the taxonomic assignment of specimens.


Subject(s)
Cephalometry/methods , Cercopithecidae/anatomy & histology , Diet , Ecosystem , Fossils , Animals , Anthropology, Physical , Cercopithecidae/classification , Cercopithecidae/physiology , Paleodontology/methods , Phylogeny , Physiology, Comparative , South Africa
18.
Am J Phys Anthropol ; 134(4): 489-500, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17786993

ABSTRACT

We assess craniometric variation in 153 individually dated human crania from South Africa with the aim of investigating genetic continuity/discontinuity during the Holocene. Evidence from the archaeological record is used to pinpoint likely episodes of genetic discontinuity. Craniometric data are then used to assess the likelihood of genetic change having occurred. Two periods of possible genetic discontinuity are identified: i) c. 4,000 BP, when an increase in overall population size, shifts in site organization and diet, and reduced mobility, were accompanied by reductions in stature; ii) c. 2,000 BP, when the herding of domesticates and the use of pottery vessels were introduced into the region. Results indicate that there was a decrease in cranial size and concomitant size-related changes in craniofacial shape between c.4,000 BP and 3,000 BP. This was followed almost immediately by a recovery in craniofacial size and a return to pre-4,000 BP craniofacial shape at c. 3,000 BP. This recovery continued gradually, extending into the herder period without any major shifts in morphology at 2,000 BP. It is suggested that the fluctuations in craniofacial size/shape were related to changes in environmental factors. Results obtained are consistent with long term continuity in South African Later Stone Age populations during the Holocene.


Subject(s)
Black People/history , Fossils , Genetic Variation , Population Dynamics , Skull/anatomy & histology , Black People/genetics , History, Ancient , Humans , South Africa
19.
J Hum Evol ; 51(6): 632-45, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16962160

ABSTRACT

Recent studies point to contact and possible admixture among contemporaneous hominin species during the Plio-Pleistocene. However, detection of hybridization in fossils-and especially fossil hominins-is contentious, and it is hindered in large part by our lack of understanding about how morphological hybridity is manifested in the primate skeleton. Here, we report on a study of known-pedigree, purebred yellow and olive baboons (n = 112) and their hybrids (n = 57), derived from the baboon colony of the Southwest Foundation for Biomedical Research. The hybrids were analyzed in two different groups: (1) F1 = olive x yellow first-generation hybrids; (2) B1 = olive x F1 backcross hybrids. Thirty-nine metric variables were tested for heterosis and dysgenesis. Nonmetric data were also collected from the crania. Results show that these primate hybrids are somewhat heterotic relative to their parental populations, are highly variable, and display novel phenotypes. These effects are most evident in the dentition and probably indicate the mixing of two separately coadapted genomes and the breakdown in the coordination of early development, despite the fact that these populations diverged fairly recently. Similar variation is also observed in museum samples drawn from natural hybrid zones. The results offer a strategy for detecting hybrid zones in the fossil record; implications for interpreting the hominin fossil record are discussed.


Subject(s)
Biological Evolution , Hybridization, Genetic , Papio/anatomy & histology , Phenotype , Skull/anatomy & histology , Tooth/anatomy & histology , Analysis of Variance , Animals , Anthropometry , Hybrid Vigor , Papio/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...