Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 233, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641599

ABSTRACT

BACKGROUND: Multiple neurodegenerative diseases are induced by the formation and deposition of protein aggregates. In particular, the microtubule-associated protein Tau leads to the development of so-called tauopathies characterized by the aggregation of hyperphosphorylated Tau within neurons. We recently showed that the constitutive activity of the serotonin receptor 7 (5-HT7R) is required for Tau hyperphosphorylation and aggregation through activation of the cyclin-dependent kinase 5 (CDK5). We also demonstrated physical interaction between 5-HT7R and CDK5 at the plasma membrane suggesting that the 5-HT7R/CDK5 complex is an integral part of the signaling network involved in Tau-mediated pathology. METHODS: Using biochemical, microscopic, molecular biological, computational and AI-based approaches, we investigated structural requirements for the formation of 5-HT7R/CDK5 complex. RESULTS: We demonstrated that 5-HT7R domains responsible for coupling to Gs proteins are not involved in receptor interaction with CDK5. We also created a structural model of the 5-HT7R/CDK5 complex and refined the interaction interface. The model predicted two conserved phenylalanine residues, F278 and F281, within the third intracellular loop of 5-HT7R to be potentially important for complex formation. While site-directed mutagenesis of these residues did not influence Gs protein-mediated receptor signaling, replacement of both phenylalanines by alanine residues significantly reduced 5-HT7R/CDK5 interaction and receptor-mediated CDK5 activation, leading to reduced Tau hyperphosphorylation and aggregation. Molecular dynamics simulations of 5-HT7R/CDK5 complex for wild-type and receptor mutants confirmed binding interface stability of the initial model. CONCLUSIONS: Our results provide a structural basis for the development of novel drugs targeting the 5-HT7R/CDK5 interaction interface for the selective treatment of Tau-related disorders, including frontotemporal dementia and Alzheimer's disease.


Subject(s)
Cyclin-Dependent Kinase 5 , Enzyme Activation , Receptors, Serotonin , Humans , Alzheimer Disease/metabolism , Cyclin-Dependent Kinase 5/chemistry , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Phosphorylation , Receptors, Serotonin/chemistry , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism , Signal Transduction
2.
Prog Neurobiol ; 197: 101900, 2021 02.
Article in English | MEDLINE | ID: mdl-32841723

ABSTRACT

Tauopathies comprise a heterogeneous family of neurodegenerative diseases characterized by pathological accumulation of hyperphosphorylated Tau protein. Pathological changes in serotonergic signaling have been associated with tauopathy etiology, but the underlying mechanisms remain poorly understood. Here, we studied the role of the serotonin receptor 7 (5-HT7R), in a mouse model of tauopathy induced by overexpressing the human Tau[R406W] mutant associated with inherited forms of frontotemporal dementia. We showed that the constitutive 5-HT7R activity is required for Tau hyperphosphorylation and formation of highly bundled Tau structures (HBTS) through G-protein-independent, CDK5-dependent mechanism. We also showed that 5-HT7R physically interacts with CDK5. At the systemic level, 5-HT7R-mediated CDK5 activation induces HBTS leading to neuronal death, reduced long-term potentiation (LTP), and impaired memory in mice. Specific blockade of constitutive 5-HT7R activity in neurons that overexpressed Tau[R406W] prevents Tau hyperphosphorylation, aggregation, and neurotoxicity. Moreover, 5-HT7R knockdown in the prefrontal cortex fully abrogates Tau[R406W]-induced LTP deficits and memory impairments. Thus, 5-HT7R/CDK5 signaling emerged as a new, promising target for tauopathy treatments.


Subject(s)
Memory Disorders , Animals , Disease Models, Animal , Long-Term Potentiation , Mice , Receptors, Serotonin/genetics , Tauopathies , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...