Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Plant Reprod ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019279

ABSTRACT

KEY MESSAGE: The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.

2.
F1000Res ; 102021.
Article in English | MEDLINE | ID: mdl-34900223

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus discovered that appeared in Wuhan, China, in December 2019, causes COVID-19 disease which have resulted in cases similar to SARS-atypical pneumonia. As of March 1, 2021, Mexico had reached 2.11 million cases of COVID-19 and 189 thousand deaths; around 116 million cases and 2.57 million deaths are reported worldwide with new cases and increasing mortality every day. To date, there is no specific commercial treatment to control the infection. Repurpose drugs targeting the angiotensin-converting enzyme 2 (ACE2) receptor represents an alternative strategy to block the binding of SARS-CoV-2 protein S and forestall virus adhesion, internalization and replication in the host cell. Methods: Rigid molecular docking was performed using receptor binding domain of the S1 subunit of S protein (RBD S1)-ACE2 (PDB ID: 6VW1) interaction site and 1,283 drugs FDA approved and prescribed by the Mexican Public Health System. The results were analyzed by docking score, frequency of the drug in receptor site and the types of interactions at the binding site residues. Results: About 40 drugs were identified as a potential inhibitor of RBD S1-ACE2 interaction. Within the top-ranked drugs, we identified ipratropium, formoterol and fexofenadine, which stands out as they are used as therapies to treat chronic obstructive pulmonary disease, asthma and virtually any respiratory infection. Conclusions: Our results will serve as the basis for in vitro and in vivo studies to evaluate the potential use of those drugs to generate affordable and convenient therapies to treat COVID-19.


Subject(s)
COVID-19 , Drug Repositioning , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Plants (Basel) ; 10(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34451739

ABSTRACT

Late embryogenesis abundant (LEA) proteins are a large protein family that mainly function in protecting cells from abiotic stress, but these proteins are also involved in regulating plant growth and development. In this study, we performed a functional analysis of LEA13 and LEA30 from Arabidopsis thaliana. The results showed that the expression of both genes increased when plants were subjected to drought-stressed conditions. The insertional lines lea13 and lea30 were identified for each gene, and both had a T-DNA element in the regulatory region, which caused the genes to be downregulated. Moreover, lea13 and lea30 were more sensitive to drought stress due to their higher transpiration and stomatal spacing. Microarray analysis of the lea13 background showed that genes involved in hormone signaling, stomatal development, and abiotic stress responses were misregulated. Our results showed that LEA proteins are involved in drought tolerance and participate in stomatal density.

4.
Plant Cell ; 16(10): 2614-28, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15377758

ABSTRACT

Classical arabinogalactan proteins (AGPs) are an abundant class of cell surface proteoglycans widely distributed in flowering plants. We have used a combination of enhancer detection tagging and RNA interference (RNAi)-induced posttrancriptional silencing to demonstrate that AGP18, a gene encoding a classical arabinogalactan protein, is essential for female gametogenesis in Arabidopsis thaliana. AGP18 is expressed in cells that spatially and temporally define the sporophytic to gametophytic transition and during early stages of seed development. More than 75% of the T1 transformants resulted in T2 lines showing reduced seed set during at least three consecutive generations but no additional developmental defects. AGP18-silenced T2 lines showed reduced AGP18 transcript levels in female reproductive organs, the presence of 21-bp RNA fragments specific to the AGP18 gene, and the absence of in situ AGP18 mRNA localization in developing ovules. Reciprocal crosses to wild-type plants indicate that the defect is female specific. The genetic and molecular analysis of AGP18-silenced plants containing a single T-DNA RNAi insertion suggests that posttranscriptional silencing of AGP18 is acting both at the sporophytic and gametophytic levels. A cytological analysis of all defective AGP18-RNAi lines, combined with the analysis of molecular markers acting at key stages of female gametogenesis, showed that the functional megaspore fails to enlarge and mitotically divide, indicating that AGP18 is essential to initiate female gametogenesis in Arabidopsis. Our results assign a specific function in plant development to a gene encoding a classical AGP.


Subject(s)
Arabidopsis/physiology , Mucoproteins/physiology , Arabidopsis/embryology , Base Sequence , DNA Primers , Enhancer Elements, Genetic , In Situ Hybridization , Molecular Sequence Data , Mucoproteins/genetics , Plant Proteins , RNA Interference , Reproduction/physiology , Seeds/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL