Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cancer Cell ; 42(1): 13-15, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38194913

ABSTRACT

Rare disseminated tumor cells (DTCs) can persist after treatment in patients for years, and the immune system does not eliminate them. Goddard et al. propose that immune evasion by rare dormant DTCs is due to an improbability of contact imposed by large distances separating effector T cells and DTCs.


Subject(s)
Immune Evasion , Neoplasms , Humans
2.
Clin Cancer Res ; 29(24): 5155-5172, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37982738

ABSTRACT

PURPOSE: The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN: A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS: HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS: Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Cell Line, Tumor , Cell Cycle , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Cell Death , eIF-2 Kinase/genetics
3.
Cancer Treat Rev ; 121: 102639, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864955

ABSTRACT

HER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the clinic.


Subject(s)
Axl Receptor Tyrosine Kinase , Breast Neoplasms , Female , Humans , Axl Receptor Tyrosine Kinase/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases
4.
ACS Appl Mater Interfaces ; 15(32): 38323-38334, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37549382

ABSTRACT

Despite advances in breast cancer treatment, it remains the leading cause of cancer-related death in women worldwide. In this context, microRNAs have emerged as potential therapeutic targets but still present some limitations for in vivo applications. Particularly, miR-200c-3p is a well-known tumor suppressor microRNA that inhibits tumor progression and metastasis in breast cancer through downregulating ZEB1 and ZEB2. Based on the above, we describe the design and validation of a nanodevice using mesoporous silica nanoparticles for miR-200c-3p delivery for breast cancer treatment. We demonstrate the biocompatibility of the synthesized nanodevices as well as their ability to escape from endosomes/lysosomes and inhibit tumorigenesis, invasion, migration, and proliferation of tumor cells in vitro. Moreover, tumor targeting and effective delivery of miR-200c-3p from the nanoparticles in vivo are confirmed in an orthotopic breast cancer mouse model, and the therapeutic efficacy is also evidenced by a decrease in tumor size and lung metastasis, while showing no signs of toxicity. Overall, our results provide evidence that miR-200c-3p-loaded nanoparticles are a potential strategy for breast cancer therapy and a safe and effective system for tumor-targeted delivery of microRNAs.


Subject(s)
Lung Neoplasms , MicroRNAs , Nanoparticles , Female , Mice , Animals , Silicon Dioxide , MicroRNAs/genetics , Lung Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Proliferation/genetics
5.
Cancers (Basel) ; 15(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37046799

ABSTRACT

Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells' exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.

7.
Sci Adv ; 8(20): eabk2746, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35594351

ABSTRACT

Anti-HER2 therapies have markedly improved prognosis of HER2-positive breast cancer. However, different mechanisms play a role in treatment resistance. Here, we identified AXL overexpression as an essential mechanism of trastuzumab resistance. AXL orchestrates epithelial-to-mesenchymal transition and heterodimerizes with HER2, leading to activation of PI3K/AKT and MAPK pathways in a ligand-independent manner. Genetic depletion and pharmacological inhibition of AXL restored trastuzumab response in vitro and in vivo. AXL inhibitor plus trastuzumab achieved complete regression in trastuzumab-resistant patient-derived xenograft models. Moreover, AXL expression in HER2-positive primary tumors was able to predict prognosis. Data from the PAMELA trial showed a change in AXL expression during neoadjuvant dual HER2 blockade, supporting its role in resistance. Therefore, our study highlights the importance of targeting AXL in combination with anti-HER2 drugs across HER2-amplified breast cancer patients with high AXL expression. Furthermore, it unveils the potential value of AXL as a druggable prognostic biomarker in HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
8.
Cancer Metastasis Rev ; 41(1): 77-105, 2022 03.
Article in English | MEDLINE | ID: mdl-34524579

ABSTRACT

Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.


Subject(s)
Breast Neoplasms , MicroRNAs , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Quality of Life
9.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360578

ABSTRACT

Estrogen receptor-positive (ER+) is the most common subtype of breast cancer. Endocrine therapy is the fundamental treatment against this entity, by directly or indirectly modifying estrogen production. Recent advances in novel compounds, such as cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), or phosphoinositide 3-kinase (PI3K) inhibitors have improved progression-free survival and overall survival in these patients. However, some patients still develop endocrine resistance after or during endocrine treatment. Different underlying mechanisms have been identified as responsible for endocrine treatment resistance, where ESR1 gene mutations are one of the most studied, outstanding from others such as somatic alterations, microenvironment involvement and epigenetic changes. In this scenario, selective estrogen receptor degraders/downregulators (SERD) are one of the weapons currently in research and development against aromatase inhibitor- or tamoxifen-resistance. The first SERD to be developed and approved for ER+ breast cancer was fulvestrant, demonstrating also interesting activity in ESR1 mutated patients in the second line treatment setting. Recent investigational advances have allowed the development of new oral bioavailable SERDs. This review describes the evolution and ongoing studies in SERDs and new molecules against ER, with the hope that these novel drugs may improve our patients' future landscape.


Subject(s)
Breast Neoplasms/drug therapy , Molecular Targeted Therapy , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/therapeutic use , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans
10.
Cancers (Basel) ; 13(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200463

ABSTRACT

The early diagnosis of breast cancer is essential to improve patients' survival rate. In this context, microRNAs have been described as potential diagnostic biomarkers for breast cancer. Particularly, circulating microRNAs have a strong value as non-invasive biomarkers. Herein, we assessed the potential of a microRNA signature based on miR-30b-5p and miR-99a-5p levels in plasma as a diagnostic biomarker for breast cancer. This two-microRNA signature was constructed by Principal Component Analysis and its prognostic value was assessed in a discovery cohort and blindly validated in a second cohort from an independent institution. ROC curve analysis and biomarker performance parameter evaluation demonstrated that our proposed signature presents a high value as a non-invasive biomarker for very early detection of breast cancer. In addition, pathway enrichment analysis identified three of the well-known pathways involved in cancer as targets of the two microRNAs.

11.
Front Oncol ; 10: 1661, 2020.
Article in English | MEDLINE | ID: mdl-33014831

ABSTRACT

Downregulation of miR-33b has been documented in many types of cancers and is being involved in proliferation, migration, and epithelial-mesenchymal transition (EMT). Furthermore, the enhancer of zeste homolog 2-gene (EZH2) is a master regulator of controlling the stem cell differentiation and the cell proliferation processes. We aim to evaluate the implication of miR-33b in the EMT pathway in HER2+ breast cancer (BC) and to analyze the role of EZH2 in this process as well as the interaction between them. miR-33b is downregulated in HER2+ BC cells vs healthy controls, where EZH2 has an opposite expression in vitro and in patients' samples. The upregulation of miR-33b suppressed proliferation, induced apoptosis, reduced invasion, migration and regulated EMT by an increase of E-cadherin and a decrease of ß-catenin and vimentin. The silencing of EZH2 mimicked the impact of miR-33b overexpression. Furthermore, the inhibition of miR-33b induces cell proliferation, invasion, migration, EMT, and EZH2 expression in non-tumorigenic cells. Importantly, the Kaplan-Meier analysis showed a significant association between high miR-33b expression and better overall survival. These results suggest miR-33b as a suppressive miRNA that could inhibit tumor metastasis and invasion in HER2+ BC partly by impeding EMT through the repression of the MYC-EZH2 loop.

12.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050096

ABSTRACT

MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p's deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Circulating MicroRNA/blood , Early Detection of Cancer/methods , MicroRNAs/blood , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating MicroRNA/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Middle Aged , ROC Curve , Real-Time Polymerase Chain Reaction , Retrospective Studies
13.
Sci Rep ; 9(1): 5316, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926829

ABSTRACT

The mechanisms of chemotherapy resistance in triple negative breast cancer remain unclear, and so, new molecules which might mediate this resistance could optimize treatment response. Here we analyzed the involvement of the miRNA-449 family in the response to doxorubicin. The cell viability, cell-cycle phases, and the expression of in silico target genes and proteins of sensitive/resistant triple negative breast cancer cell lines were evaluated in response to doxorubicin treatment and after gain/loss of miRNAs-449 function achieved by transient transfection. Triple negative breast cancer patients were selected for ex vivo experiments and to evaluate gene and miRNAs expression changes after treatment, as well as survival analysis by Kaplan-Meier. Doxorubicin treatment upregulated miRNAs-449 and DNA-damage responder factors E2F1 and E2F3 in triple negative breast cancer sensitive breast cancer cells, while expression remained unaltered in resistant ones. In vitro overexpression of miRNAs-449 sensitized cells to the treatment and significantly reduced the resistance to doxorubicin. These changes showed also a strong effect on cell cycle regulation. Finally, elevated levels of miRNA-449a associated significantly with better survival in chemotherapy-treated triple negative breast cancer patients. These results reveal for the first time the involvement of the miRNA-449 family in doxorubicin resistance and their predictive and prognostic value in triple negative breast cancer patients.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Cell Cycle Proteins/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , MicroRNAs/genetics , Nuclear Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Antibiotics, Antineoplastic/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Doxorubicin/therapeutic use , E2F1 Transcription Factor/metabolism , Female , Humans , Models, Biological , Prognosis , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality
14.
Sci Rep ; 7: 41309, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120942

ABSTRACT

A subset of HER2+ breast cancer patients manifest clinical resistance to trastuzumab. Recently, miR-26a and miR-30b have been identified as trastuzumab response regulators, and their target gene CCNE2 seems to play an important role in resistance to trastuzumab therapy. Cell viability was evaluated in trastuzumab treated HER2+ BT474 wt (sensitive), BT474r (acquired resistance), HCC1954 (innate resistance), and MDA-MB-231 (HER2-) cell lines, and the expression of miR-26a, miR-30b, and their target genes was measured. BT474 wt cell viability decreased by 60% and miR-26a and miR-30b were significantly overexpressed (~3-fold, p = 0.003 and p = 0.002, respectively) after trastuzumab treatment, but no differences were observed in resistant and control cell lines. Overexpression of miR-30b sensitized BT474r cells to trastuzumab (p = 0.01) and CCNE2, was significantly overexpressed after trastuzumab treatment in BT474r cells (p = 0.032), but no significant changes were observed in sensitive cell line. When CCNE2 was silenced BT474r cell sensitivity to trastuzumab increased (p = 0.03). Thus, the molecular mechanism of trastuzumab action in BT474 cell line may be regulated by miR-26a and miR-30b and CCNE2 overexpression might play an important role in acquired trastuzumab resistance in HER2+ breast cancer given that resistance was diminished when CCNE2 was silenced.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclins/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cyclins/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Humans , MicroRNAs/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Trastuzumab/pharmacology
15.
J Biol Chem ; 291(29): 14973-85, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27261460

ABSTRACT

Cell viability requires adaptation to changing environmental conditions. Ubiquitin-mediated endocytosis plays a crucial role in this process, because it provides a mechanism to remove transport proteins from the membrane. Arrestin-related trafficking proteins are important regulators of the endocytic pathway in yeast, facilitating selective ubiquitylation of target proteins by the E3 ubiquitin ligase, Rsp5. Specifically, Rod1 (Art4) has been reported to regulate the endocytosis of both the Hxt1, Hxt3, and Hxt6 glucose transporters and the Jen1 lactate transporter. Also, the AMP kinase homologue, Snf1, and 14-3-3 proteins have been shown to regulate Jen1 via Rod1. Here, we further characterized the role of Rod1, Snf1, and 14-3-3 in the signal transduction route involved in the endocytic regulation of the Hxt6 high affinity glucose transporter by showing that Snf1 interacts specifically with Rod1 and Rog3 (Art7), that the interaction between the Bmh2 and several arrestin-related trafficking proteins may be modulated by carbon source, and that both the 14-3-3 protein Bmh2 and the Snf1 regulatory domain interact with the arrestin-like domain containing the N-terminal half of Rod1 (amino acids 1-395). Finally, using both co-immunoprecipitation and bimolecular fluorescence complementation, we demonstrated the interaction of Rod1 with Hxt6 and showed that the localization of the Rod1-Hxt6 complex at the plasma membrane is affected by carbon source and is reduced upon overexpression of SNF1 and BMH2.


Subject(s)
14-3-3 Proteins/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/genetics , Arrestins/chemistry , Arrestins/genetics , Arrestins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Models, Biological , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...