Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 602(10): 2253-2264, 2024 May.
Article in English | MEDLINE | ID: mdl-38638084

ABSTRACT

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Subject(s)
Carbidopa , Evoked Potentials, Motor , Levodopa , Transcranial Magnetic Stimulation , Humans , Male , Levodopa/pharmacology , Adult , Evoked Potentials, Motor/drug effects , Transcranial Magnetic Stimulation/methods , Carbidopa/pharmacology , Young Adult , Neural Inhibition/drug effects , Double-Blind Method , Dopamine Agents/pharmacology , Dopamine/pharmacology , Drug Combinations , Median Nerve/physiology , Median Nerve/drug effects
3.
Clin Neurophysiol Pract ; 8: 16-23, 2023.
Article in English | MEDLINE | ID: mdl-36632369

ABSTRACT

Objective: To establish the intrasession relative and absolute reliability of Short (SAI) and Long-Latency Afferent Inhibition (LAI). These findings will allow us to guide future explorations of changes to these measures. Methods: 31 healthy individuals (21.06 ±â€¯2.85 years) had SAI and LAI obtained thrice at 30-minute intervals in one session. To identify the minimum number of trials required to reliably elicit SAI and LAI, relative reliability was assessed at running intervals of 5 trials. Results: SAI had moderate-high, and LAI had high-excellent relative reliability. Both SAI and LAI had high amounts of measurement error. LAI had high relative reliability when only 5 frames of data were included, whereas SAI required ∼20-30 frames of data for the same. For both SAI and LAI, individual smallest detectable change was large but was reduced at the group level. Conclusions: SAI and LAI can be used for both diagnostic purposes and to assess group level change but have limited utility in assessing within-individual changes. Significance: These results can be used to inform future work regarding the utility of SAI and LAI, particularly in terms of their ability to identify particularly high or low values of afferent inhibition.

4.
Neuroreport ; 34(3): 123-127, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36719836

ABSTRACT

Sensorimotor integration refers to the process of combining incoming sensory information with outgoing motor commands to control movement. Short-latency afferent inhibition (SAI), and long-latency afferent inhibition (LAI) are neurophysiological measures of sensorimotor integration collected using transcranial magnetic stimulation. No studies to date have investigated the influence of tactile discrimination training on these measures. This study aimed to determine whether SAI and LAI are modulated following training on a custom-designed tactile discrimination maze task. Participants performed a 'high difficulty' and 'low difficulty' maze training condition on separate visits. On an additional visit, no maze training was performed to serve as a control condition. Despite evidence of performance improvements during training, there were no significant changes in SAI or LAI following training in either condition. The total number of errors during maze training was significantly greater in the high-difficulty condition compared with the low-difficulty condition. These findings suggest that sensorimotor maze training for 30 min is insufficient to modify the magnitude of SAI and LAI.


Subject(s)
Neural Inhibition , Transcranial Magnetic Stimulation , Humans , Neural Inhibition/physiology , Reaction Time/physiology , Movement , Evoked Potentials, Motor/physiology , Afferent Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...