Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Leukemia ; 34(11): 2951-2963, 2020 11.
Article in English | MEDLINE | ID: mdl-32576961

ABSTRACT

To establish novel and effective treatment combinations for chronic myelomonocytic leukemia (CMML) preclinically, we hypothesized that supplementation of CMML cells with the human oncogene Meningioma 1 (MN1) promotes expansion and serial transplantability in mice, while maintaining the functional dependencies of these cells on their original genetic profile. Using lentiviral expression of MN1 for oncogenic supplementation and transplanting transduced primary mononuclear CMML cells into immunocompromised mice, we established three serially transplantable CMML-PDX models with disease-related gene mutations that recapitulate the disease in vivo. Ectopic MN1 expression was confirmed to enhance the proliferation of CMML cells, which otherwise did not engraft upon secondary transplantation. Furthermore, MN1-supplemented CMML cells were serially transplantable into recipient mice up to 5 generations. This robust engraftment enabled an in vivo RNA interference screening targeting CMML-related mutated genes including NRAS, confirming that their functional relevance is preserved in the presence of MN1. The novel combination treatment with azacitidine and the MEK-inhibitor trametinib additively inhibited ERK-phosphorylation and thus depleted the signal from mutated NRAS. The combination treatment significantly prolonged survival of CMML mice compared to single-agent treatment. Thus, we identified the combination of azacitidine and trametinib as an effective treatment in NRAS-mutated CMML and propose its clinical development.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical , Leukemia, Myelomonocytic, Chronic/drug therapy , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/pharmacology , Clonal Evolution , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Synergism , Female , GTP Phosphohydrolases/genetics , Humans , Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/mortality , Leukemia, Myelomonocytic, Chronic/pathology , Membrane Proteins/genetics , Mice , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridones/pharmacology , Pyridones/therapeutic use , Pyrimidinones/pharmacology , Pyrimidinones/therapeutic use , RNA, Small Interfering/genetics , Receptor, Notch1/genetics , Xenograft Model Antitumor Assays/methods
3.
Hum Gene Ther Methods ; 29(1): 16-29, 2018 02.
Article in English | MEDLINE | ID: mdl-29325442

ABSTRACT

Short hairpin RNA (shRNA) screens are powerful tools to probe genetic dependencies in loss-of-function studies, such as the identification of therapeutic targets in cancer research. Lentivirally delivered shRNAs embedded in endogenous microRNA contexts (shRNAmiRs) mediate efficient long-term suppression of target genes suitable for numerous experimental contexts and clinical applications. Here, an easy-to-use laboratory protocol is described, covering the design and pooled assembly of focused shRNAmiR libraries into an optimized, Tet-inducible all-in-one lentiviral vector, packaging of viral particles, followed by retrieval and quantification of hairpin sequences after cellular DNA-recovery. Starting from a gene list to the identification of hits, the protocol enables shRNA screens within 6 weeks.


Subject(s)
Gene Library , Genetic Vectors/genetics , Lentivirus/genetics , MicroRNAs/genetics , RNA, Small Interfering/genetics , Tetracycline , Cell Line , Humans
4.
Nucleic Acids Res ; 46(3): 1375-1385, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29267886

ABSTRACT

Genome editing with the CRISPR-Cas9 system has enabled unprecedented efficacy for reverse genetics and gene correction approaches. While off-target effects have been successfully tackled, the effort to eliminate variability in sgRNA efficacies-which affect experimental sensitivity-is in its infancy. To address this issue, studies have analyzed the molecular features of highly active sgRNAs, but independent cross-validation is lacking. Utilizing fluorescent reporter knock-out assays with verification at selected endogenous loci, we experimentally quantified the target efficacies of 430 sgRNAs. Based on this dataset we tested the predictive value of five recently-established prediction algorithms. Our analysis revealed a moderate correlation (r = 0.04 to r = 0.20) between the predicted and measured activity of the sgRNAs, and modest concordance between the different algorithms. We uncovered a strong PAM-distal GC-content-dependent activity, which enabled the exclusion of inactive sgRNAs. By deriving nine additional predictive features we generated a linear model-based discrete system for the efficient selection (r = 0.4) of effective sgRNAs (CRISPRater). We proved our algorithms' efficacy on small and large external datasets, and provide a versatile combined on- and off-target sgRNA scanning platform. Altogether, our study highlights current issues and efforts in sgRNA efficacy prediction, and provides an easily-applicable discrete system for selecting efficient sgRNAs.


Subject(s)
Algorithms , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Gene Editing/methods , Gene Targeting/methods , RNA, Guide, Kinetoplastida/genetics , Base Composition , Base Sequence , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats , HEK293 Cells , Humans , Leukocytes/cytology , Leukocytes/metabolism , Nucleic Acid Conformation , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/metabolism
5.
Biomaterials ; 139: 102-115, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28599149

ABSTRACT

RNA interference (RNAi) and CRISPR-Cas9-based screening systems have emerged as powerful and complementary tools to unravel genetic dependencies through systematic gain- and loss-of-function studies. In recent years, a series of technical advances helped to enhance the performance of virally delivered RNAi. For instance, the incorporation of short hairpin RNAs (shRNAs) into endogenous microRNA contexts (shRNAmiRs) allows the use of Tet-regulated promoters for synchronous onset of gene knockdown and precise interrogation of gene dosage effects. However, remaining challenges include lack of efficient cloning strategies, inconsistent knockdown potencies and leaky expression. Here, we present a simple, one-step cloning approach for rapid and efficient cloning of miR-30 shRNAmiR libraries. We combined a human miR-30 backbone retaining native flanking sequences with an optimized all-in-one lentiviral vector system for conditional RNAi to generate a versatile toolbox characterized by higher doxycycline sensitivity, reduced leakiness and enhanced titer. Furthermore, refinement of existing shRNA design rules resulted in substantially improved prediction of powerful shRNAs. Our approach was validated by accurate quantification of the knockdown potency of over 250 single shRNAmiRs. To facilitate access and use by the scientific community, an online tool was developed for the automated design of refined shRNA-coding oligonucleotides ready for cloning into our system.


Subject(s)
Cloning, Molecular , Genetic Vectors/genetics , Lentivirus/genetics , MicroRNAs/genetics , RNA Interference , RNA, Small Interfering/genetics , Cell Line , Doxycycline/pharmacology , Gene Knockdown Techniques , Humans , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...