Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(14): 2995-3012.e15, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37321220

ABSTRACT

Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.


Subject(s)
Lung Injury , Mice , Animals , Wnt Proteins , Frizzled Receptors , Wnt Signaling Pathway , Alveolar Epithelial Cells , Stem Cells
2.
Cell Rep Med ; 3(10): 100754, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36220068

ABSTRACT

The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of ß-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of ß-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.


Subject(s)
Focal Nodular Hyperplasia , Liver Regeneration , Humans , Liver Regeneration/genetics , beta Catenin/genetics , Endothelial Cells/metabolism , Transcriptome , Wnt Proteins/genetics , Acetaminophen/metabolism , Focal Nodular Hyperplasia/metabolism , Wnt2 Protein/genetics
3.
Mol Pharm ; 15(11): 5217-5226, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30212635

ABSTRACT

Despite a wealth of potential applications inside target cells, protein-based therapeutics are largely limited to extracellular targets due to the inability of proteins to readily cross biological membranes and enter the cytosol. Bacterial toxins, which deliver a cytotoxic enzyme into cells as part of their intoxication mechanism, hold great potential as platforms for delivering therapeutic protein cargo into cells. Diphtheria toxin (DT) has been shown to be capable of delivering an array of model proteins of varying sizes, structures, and stabilities into mammalian cells as amino-terminal fusions. Here, seeking to expand the utility of DT as a delivery vector, we asked whether an active human enzyme, purine nucleoside phosphorylase (PNP), could be delivered by DT into cells to rescue PNP deficiency. Using a series of biochemical and cellular readouts, we demonstrate that PNP is efficiently delivered into target cells in a receptor- and translocation-dependent manner. In patient-derived PNP-deficient lymphocytes and pluripotent stem cell-differentiated neurons, we show that human PNP is efficiently translocated into target cells by DT, where it is able to restore intracellular hypoxanthine levels. Further, through replacement of the native receptor-binding moiety of DT with single-chain variable fragments that were selected to bind mouse HBEGF, we show that PNP can be retargeted into mouse splenocytes from PNP-deficient mice, resulting in restoration of the proliferative capacity of T-cells. These findings highlight the versatility of the DT delivery platform and provide an attractive approach for the delivery of PNP as well as other cytosolic enzymes implicated in disease.


Subject(s)
Diphtheria Toxin/genetics , Drug Delivery Systems/methods , Purine-Nucleoside Phosphorylase/administration & dosage , Purine-Nucleoside Phosphorylase/deficiency , Recombinant Fusion Proteins/administration & dosage , B-Lymphocytes/metabolism , Cytosol/metabolism , Humans , Induced Pluripotent Stem Cells , Primary Immunodeficiency Diseases , Protein Engineering , Purine-Nucleoside Phosphorylase/drug effects , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/therapeutic use , Purine-Pyrimidine Metabolism, Inborn Errors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...