Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Article in English | MEDLINE | ID: mdl-38831121

ABSTRACT

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

2.
Biomater Adv ; 161: 213884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723432

ABSTRACT

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Subject(s)
Cell Movement , Elasticity Imaging Techniques , Extracellular Matrix , Prostatic Neoplasms , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Humans , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Elasticity Imaging Techniques/methods , Animals , Mice , Cell Line, Tumor , Diffusion Magnetic Resonance Imaging/methods
3.
JAMA ; 331(15): 1320-1321, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38497956

ABSTRACT

This study compares 2 large language models and their performance vs that of competing open-source models.


Subject(s)
Artificial Intelligence , Diagnostic Imaging , Medical History Taking , Language
4.
Curr Opin Rheumatol ; 36(4): 267-273, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38533807

ABSTRACT

PURPOSE OF REVIEW: To evaluate the current applications and prospects of artificial intelligence and machine learning in diagnosing and managing axial spondyloarthritis (axSpA), focusing on their role in medical imaging, predictive modelling, and patient monitoring. RECENT FINDINGS: Artificial intelligence, particularly deep learning, is showing promise in diagnosing axSpA assisting with X-ray, computed tomography (CT) and MRI analyses, with some models matching or outperforming radiologists in detecting sacroiliitis and markers. Moreover, it is increasingly being used in predictive modelling of disease progression and personalized treatment, and could aid risk assessment, treatment response and clinical subtype identification. Variable study designs, sample sizes and the predominance of retrospective, single-centre studies still limit the generalizability of results. SUMMARY: Artificial intelligence technologies have significant potential to advance the diagnosis and treatment of axSpA, providing more accurate, efficient and personalized healthcare solutions. However, their integration into clinical practice requires rigorous validation, ethical and legal considerations, and comprehensive training for healthcare professionals. Future advances in artificial intelligence could complement clinical expertise and improve patient care through improved diagnostic accuracy and tailored therapeutic strategies, but the challenge remains to ensure that these technologies are validated in prospective multicentre trials and ethically integrated into patient care.


Subject(s)
Artificial Intelligence , Axial Spondyloarthritis , Machine Learning , Humans , Axial Spondyloarthritis/diagnosis , Deep Learning , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods
5.
Eur Radiol ; 34(1): 643-653, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37542653

ABSTRACT

OBJECTIVE: To compare tumor therapy response assessments with whole-body diffusion-weighted imaging (WB-DWI) and 18F-fluorodeoxyglucose ([18F]FDG) PET/MRI in pediatric patients with Hodgkin lymphoma and non-Hodgkin lymphoma. MATERIALS AND METHODS: In a retrospective, non-randomized single-center study, we reviewed serial simultaneous WB-DWI and [18F]FDG PET/MRI scans of 45 children and young adults (27 males; mean age, 13 years ± 5 [standard deviation]; age range, 1-21 years) with Hodgkin lymphoma (n = 20) and non-Hodgkin lymphoma (n = 25) between February 2018 and October 2022. We measured minimum tumor apparent diffusion coefficient (ADCmin) and maximum standardized uptake value (SUVmax) of up to six target lesions and assessed therapy response according to Lugano criteria and modified criteria for WB-DWI. We evaluated the agreement between WB-DWI- and [18F]FDG PET/MRI-based response classifications with Gwet's agreement coefficient (AC). RESULTS: After induction chemotherapy, 95% (19 of 20) of patients with Hodgkin lymphoma and 72% (18 of 25) of patients with non-Hodgkin lymphoma showed concordant response in tumor metabolism and proton diffusion. We found a high agreement between treatment response assessments on WB-DWI and [18F]FDG PET/MRI (Gwet's AC = 0.94; 95% confidence interval [CI]: 0.82, 1.00) in patients with Hodgkin lymphoma, and a lower agreement for patients with non-Hodgkin lymphoma (Gwet's AC = 0.66; 95% CI: 0.43, 0.90). After completion of therapy, there was an excellent agreement between WB-DWI and [18F]FDG PET/MRI response assessments (Gwet's AC = 0.97; 95% CI: 0.91, 1). CONCLUSION: Therapy response of Hodgkin lymphoma can be evaluated with either [18F]FDG PET or WB-DWI, whereas patients with non-Hodgkin lymphoma may benefit from a combined approach. CLINICAL RELEVANCE STATEMENT: Hodgkin lymphoma and non-Hodgkin lymphoma exhibit different patterns of tumor response to induction chemotherapy on diffusion-weighted MRI and PET/MRI. KEY POINTS: • Diffusion-weighted imaging has been proposed as an alternative imaging to assess tumor response without ionizing radiation. • After induction therapy, whole-body diffusion-weighted imaging and PET/MRI revealed a higher agreement in patients with Hodgkin lymphoma than in those with non-Hodgkin lymphoma. • At the end of therapy, whole-body diffusion-weighted imaging and PET/MRI revealed an excellent agreement for overall tumor therapy responses for all lymphoma types.


Subject(s)
Hodgkin Disease , Lymphoma, Non-Hodgkin , Male , Young Adult , Humans , Child , Infant , Child, Preschool , Adolescent , Adult , Fluorodeoxyglucose F18 , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/therapy , Hodgkin Disease/pathology , Retrospective Studies , Radiopharmaceuticals , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Lymphoma, Non-Hodgkin/diagnostic imaging , Lymphoma, Non-Hodgkin/therapy , Lymphoma, Non-Hodgkin/pathology , Positron-Emission Tomography/methods , Whole Body Imaging/methods
7.
Acta Radiol Open ; 12(10): 20584601231213740, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38034076

ABSTRACT

Background: The growing role of artificial intelligence (AI) in healthcare, particularly radiology, requires its unbiased and fair development and implementation, starting with the constitution of the scientific community. Purpose: To examine the gender and country distribution among academic editors in leading computer science and AI journals. Material and Methods: This cross-sectional study analyzed the gender and country distribution among editors-in-chief, senior, and associate editors in all 75 Q1 computer science and AI journals in the Clarivate Journal Citations Report and SCImago Journal Ranking 2022. Gender was determined using an open-source algorithm (Gender Guesser™), selecting the gender with the highest calibrated probability. Result: Among 4,948 editorial board members, women were underrepresented in all positions (editors-in-chief/senior editors/associate editors: 14%/18%/17%). The proportion of women correlated positively with the SCImago Journal Rank indicator (ρ = 0.329; p = .004). The U.S., the U.K., and China comprised 50% of editors, while Australia, Finland, Estonia, Denmark, the Netherlands, the U.K., Switzerland, and Slovenia had the highest women editor representation per million women population. Conclusion: Our results highlight gender and geographic disparities on leading computer science and AI journal editorial boards, with women being underrepresented in all positions and a disproportional relationship between the Global North and South.

8.
Joint Bone Spine ; 91(3): 105651, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37797827

ABSTRACT

Rheumatic disorders present a global health challenge, marked by inflammation and damage to joints, bones, and connective tissues. Accurate, timely diagnosis and appropriate management are crucial for favorable patient outcomes. Magnetic resonance imaging (MRI) has become indispensable in rheumatology, but interpretation remains laborious and variable. Artificial intelligence (AI), including machine learning (ML) and deep learning (DL), offers a means to improve and advance MRI analysis. This review examines current AI applications in rheumatology MRI analysis, addressing diagnostic support, disease classification, activity assessment, and progression monitoring. AI demonstrates promise, with high sensitivity, specificity, and accuracy, achieving or surpassing expert performance. The review also discusses clinical implementation challenges and future research directions to enhance rheumatic disease diagnosis and management.

9.
RMD Open ; 9(4)2023 10.
Article in English | MEDLINE | ID: mdl-37899091

ABSTRACT

OBJECTIVES: Sex-specific differences in the presentation of axial spondyloarthritis (axSpA) may contribute to a diagnostic delay in women. The aim of this study was to investigate the diagnostic performance of MRI findings comparing men and women. METHODS: Patients with back pain from six different prospective cohorts (n=1194) were screened for inclusion in this post hoc analysis. Two blinded readers scored the MRI data sets independently for the presence of ankylosis, erosion, sclerosis, fat metaplasia and bone marrow oedema. Χ2 tests were performed to compare lesion frequencies. Contingency tables were used to calculate markers for diagnostic performance, with clinical diagnosis as the standard of reference. The positive and negative likelihood ratios (LR+/LR-) were used to calculate the diagnostic OR (DOR) to assess the diagnostic performance. RESULTS: After application of exclusion criteria, 526 patients (379 axSpA (136 women and 243 men) and 147 controls with chronic low back pain) were included. No major sex-specific differences in the diagnostic performance were shown for bone marrow oedema (DOR m: 3.0; f: 3.9). Fat metaplasia showed a better diagnostic performance in men (DOR 37.9) than in women (DOR 5.0). Lower specificity was seen in women for erosions (77% vs 87%), sclerosis (44% vs 66%), fat metaplasia (87% vs 96%). CONCLUSION: The diagnostic performance of structural MRI markers is substantially lower in female patients with axSpA; active inflammatory lesions show comparable performance in both sexes, while still overall inferior to structural markers. This leads to a comparably higher risk of false positive findings in women.


Subject(s)
Axial Spondyloarthritis , Bone Marrow Diseases , Spondylarthritis , Male , Humans , Female , Spondylarthritis/diagnostic imaging , Spondylarthritis/pathology , Sacroiliac Joint/pathology , Prospective Studies , Delayed Diagnosis , Sclerosis/pathology , Magnetic Resonance Imaging , Bone Marrow Diseases/pathology , Edema/diagnostic imaging , Edema/etiology , Metaplasia/pathology
10.
Med Sci Educ ; 33(4): 1007-1012, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37546190

ABSTRACT

The increasing use of artificial intelligence (AI) in medicine is associated with new ethical challenges and responsibilities. However, special considerations and concerns should be addressed when integrating AI applications into medical education, where healthcare, AI, and education ethics collide. This commentary explores the biomedical ethical responsibilities of medical institutions in incorporating AI applications into medical education by identifying potential concerns and limitations, with the goal of implementing applicable recommendations. The recommendations presented are intended to assist in developing institutional guidelines for the ethical use of AI for medical educators and students.

11.
Pediatr Blood Cancer ; 70(11): e30629, 2023 11.
Article in English | MEDLINE | ID: mdl-37580891

ABSTRACT

PURPOSES: This study aims to ascertain the prevalence of cavitations in pulmonary metastases among pediatric and young adult patients with sarcoma undergoing tyrosine kinase inhibitor (TKI) therapy, and assess whether cavitation can predict clinical response and survival outcomes. METHODS: In a single-center retrospective analysis, we examined chest computed tomography (CT) scans of 17 patients (median age 16 years; age range: 4-25 years) with histopathologically confirmed bone (n = 10) or soft tissue (n = 7) sarcoma who underwent TKI treatment for lung metastases. The interval between TKI initiation and the onset of lung nodule cavitation and tumor regrowth were assessed. The combination of all imaging studies and clinical data served as the reference standard for clinical responses. Progression-free survival (PFS) was compared between patients with cavitating and solid nodules using Kaplan-Meier survival analysis and log-rank test. RESULTS: Five out of 17 patients (29%) exhibited cavitation of pulmonary nodules during TKI therapy. The median time from TKI initiation to the first observed cavitation was 79 days (range: 46-261 days). At the time of cavitation, all patients demonstrated stable disease. When the cavities began to fill with solid tumor, 60% (3/5) of patients exhibited progression in other pulmonary nodules. The median PFS for patients with cavitated pulmonary nodules after TKI treatment (6.7 months) was significantly longer compared to patients without cavitated nodules (3.8 months; log-rank p-value = .03). CONCLUSIONS: Cavitation of metastatic pulmonary nodules in sarcoma patients undergoing TKI treatment is indicative of non-progressive disease, and significantly correlates with PFS.


Subject(s)
Lung Neoplasms , Sarcoma , Adolescent , Adult , Child , Child, Preschool , Humans , Young Adult , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Prognosis , Retrospective Studies , Sarcoma/diagnostic imaging , Sarcoma/drug therapy , Sarcoma/pathology , /therapeutic use
12.
J Vis Exp ; (195)2023 May 19.
Article in English | MEDLINE | ID: mdl-37318243

ABSTRACT

T2* relaxometry is one of the established methods to measure the effect of superparamagnetic iron oxide nanoparticles on tumor tissues with magnetic resonance imaging (MRI). Iron oxide nanoparticles shorten the T1, T2, and T2* relaxation times of tumors. While the T1 effect is variable based on the size and composition of the nanoparticles, the T2 and T2* effects are usually predominant, and T2* measurements are the most time-efficient in a clinical context. Here, we present our approach to measuring tumor T2* relaxation times, using multi-echo gradient echo sequences, external software, and a standardized protocol for creating a T2* map with scanner-independent software. This facilitates the comparison of imaging data from different clinical scanners, different vendors, and co-clinical research work (i.e., tumor T2* data obtained in mouse models and patients). Once the software is installed, the T2 Fit Map plugin needs to be installed from the plugin manager. This protocol provides step-by-step procedural details, from importing the multi-echo gradient echo sequences into the software, to creating color-coded T2* maps and measuring tumor T2* relaxation times. The protocol can be applied to solid tumors in any body part and has been validated based on preclinical imaging data and clinical data in patients. This could facilitate tumor T2* measurements for multi-center clinical trials and improve the standardization and reproducibility of tumor T2* measurements in co-clinical and multi-center data analyses.


Subject(s)
Magnetic Resonance Imaging , Neoplasms , Mice , Animals , Reproducibility of Results , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Software , Magnetic Iron Oxide Nanoparticles
13.
Theranostics ; 13(8): 2710-2720, 2023.
Article in English | MEDLINE | ID: mdl-37215574

ABSTRACT

Rationale: Efficient labeling methods for mesenchymal stem cells (MSCs) are crucial for tracking and understanding their behavior in regenerative medicine applications, particularly in cartilage defects. MegaPro nanoparticles have emerged as a potential alternative to ferumoxytol nanoparticles for this purpose. Methods: In this study, we employed mechanoporation to develop an efficient labeling method for MSCs using MegaPro nanoparticles and compared their effectiveness with ferumoxytol nanoparticles in tracking MSCs and chondrogenic pellets. Pig MSCs were labeled with both nanoparticles using a custom-made microfluidic device, and their characteristics were analyzed using various imaging and spectroscopy techniques. The viability and differentiation capacity of labeled MSCs were also assessed. Labeled MSCs and chondrogenic pellets were implanted into pig knee joints and monitored using MRI and histological analysis. Results: MegaPro-labeled MSCs demonstrated shorter T2 relaxation times, higher iron content, and greater nanoparticle uptake compared to ferumoxytol-labeled MSCs, without significantly affecting their viability and differentiation capacity. Post-implantation, MegaPro-labeled MSCs and chondrogenic pellets displayed a strong hypointense signal on MRI with considerably shorter T2* relaxation times compared to adjacent cartilage. The hypointense signal of both MegaPro- and ferumoxytol-labeled chondrogenic pellets decreased over time. Histological evaluations showed regenerated defect areas and proteoglycan formation with no significant differences between the labeled groups. Conclusion: Our study demonstrates that mechanoporation with MegaPro nanoparticles enables efficient MSC labeling without affecting viability or differentiation. MegaPro-labeled cells show enhanced MRI tracking compared to ferumoxytol-labeled cells, emphasizing their potential in clinical stem cell therapies for cartilage defects.


Subject(s)
Cartilage Diseases , Mesenchymal Stem Cell Transplantation , Nanoparticles , Animals , Swine , Ferrosoferric Oxide , Stem Cells , Cartilage , Magnetic Resonance Imaging/methods , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Cell Tracking/methods
15.
Comput Methods Programs Biomed ; 234: 107505, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37003043

ABSTRACT

BACKGROUND AND OBJECTIVES: Bedside chest radiographs (CXRs) are challenging to interpret but important for monitoring cardiothoracic disease and invasive therapy devices in critical care and emergency medicine. Taking surrounding anatomy into account is likely to improve the diagnostic accuracy of artificial intelligence and bring its performance closer to that of a radiologist. Therefore, we aimed to develop a deep convolutional neural network for efficient automatic anatomy segmentation of bedside CXRs. METHODS: To improve the efficiency of the segmentation process, we introduced a "human-in-the-loop" segmentation workflow with an active learning approach, looking at five major anatomical structures in the chest (heart, lungs, mediastinum, trachea, and clavicles). This allowed us to decrease the time needed for segmentation by 32% and select the most complex cases to utilize human expert annotators efficiently. After annotation of 2,000 CXRs from different Level 1 medical centers at Charité - University Hospital Berlin, there was no relevant improvement in model performance, and the annotation process was stopped. A 5-layer U-ResNet was trained for 150 epochs using a combined soft Dice similarity coefficient (DSC) and cross-entropy as a loss function. DSC, Jaccard index (JI), Hausdorff distance (HD) in mm, and average symmetric surface distance (ASSD) in mm were used to assess model performance. External validation was performed using an independent external test dataset from Aachen University Hospital (n = 20). RESULTS: The final training, validation, and testing dataset consisted of 1900/50/50 segmentation masks for each anatomical structure. Our model achieved a mean DSC/JI/HD/ASSD of 0.93/0.88/32.1/5.8 for the lung, 0.92/0.86/21.65/4.85 for the mediastinum, 0.91/0.84/11.83/1.35 for the clavicles, 0.9/0.85/9.6/2.19 for the trachea, and 0.88/0.8/31.74/8.73 for the heart. Validation using the external dataset showed an overall robust performance of our algorithm. CONCLUSIONS: Using an efficient computer-aided segmentation method with active learning, our anatomy-based model achieves comparable performance to state-of-the-art approaches. Instead of only segmenting the non-overlapping portions of the organs, as previous studies did, a closer approximation to actual anatomy is achieved by segmenting along the natural anatomical borders. This novel anatomy approach could be useful for developing pathology models for accurate and quantifiable diagnosis.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted/methods , Artificial Intelligence , Neural Networks, Computer , Thorax
17.
J Med Internet Res ; 25: e43110, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927634

ABSTRACT

Generative models, such as DALL-E 2 (OpenAI), could represent promising future tools for image generation, augmentation, and manipulation for artificial intelligence research in radiology, provided that these models have sufficient medical domain knowledge. Herein, we show that DALL-E 2 has learned relevant representations of x-ray images, with promising capabilities in terms of zero-shot text-to-image generation of new images, the continuation of an image beyond its original boundaries, and the removal of elements; however, its capabilities for the generation of images with pathological abnormalities (eg, tumors, fractures, and inflammation) or computed tomography, magnetic resonance imaging, or ultrasound images are still limited. The use of generative models for augmenting and generating radiological data thus seems feasible, even if the further fine-tuning and adaptation of these models to their respective domains are required first.


Subject(s)
Artificial Intelligence , Radiology , Humans , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Ultrasonography
19.
AJR Am J Roentgenol ; 220(4): 590-603, 2023 04.
Article in English | MEDLINE | ID: mdl-36197052

ABSTRACT

Ferumoxytol is an ultrasmall iron oxide nanoparticle that was originally approved by the FDA in 2009 for IV treatment of iron deficiency in adults with chronic kidney disease. Subsequently, its off-label use as an MRI contrast agent increased in clinical practice, particularly in pediatric patients in North America. Unlike conventional MRI contrast agents that are based on the rare earth metal gadolinium (gadolinium-based contrast agents), ferumoxytol is biodegradable and carries no potential risk of nephrogenic systemic fibrosis. At FDA-approved doses, ferumoxytol shows no long-term tissue retention in patients with intact iron metabolism. Ferumoxytol provides unique MRI properties, including long-lasting vascular retention (facilitating high-quality vascular imaging) and retention in reticuloendothelial system tissues, thereby supporting a variety of applications beyond those possible with gadolinium-based contrast agents (GBCAs). This Clinical Perspective describes clinical and early translational applications of ferumoxytol-enhanced MRI in children and young adults through off-label use in a variety of settings, including vascular, cardiac, and cancer imaging, drawing on the institutional experience of the authors. In addition, we describe current advances in pre-clinical and clinical research using ferumoxytol in cellular and molecular imaging as well as the use of ferumoxytol as a novel potential cancer therapeutic agent.


Subject(s)
Ferrosoferric Oxide , Renal Insufficiency, Chronic , Humans , Child , Young Adult , Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods
20.
Data Brief ; 45: 108739, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426089

ABSTRACT

In the present work, we present a publicly available, expert-segmented representative dataset of 158 3.0 Tesla biparametric MRIs [1]. There is an increasing number of studies investigating prostate and prostate carcinoma segmentation using deep learning (DL) with 3D architectures [2], [3], [4], [5], [6], [7]. The development of robust and data-driven DL models for prostate segmentation and assessment is currently limited by the availability of openly available expert-annotated datasets [8], [9], [10]. The dataset contains 3.0 Tesla MRI images of the prostate of patients with suspected prostate cancer. Patients over 50 years of age who had a 3.0 Tesla MRI scan of the prostate that met PI-RADS version 2.1 technical standards were included. All patients received a subsequent biopsy or surgery so that the MRI diagnosis could be verified/matched with the histopathologic diagnosis. For patients who had undergone multiple MRIs, the last MRI, which was less than six months before biopsy/surgery, was included. All patients were examined at a German university hospital (Charité Universitätsmedizin Berlin) between 02/2016 and 01/2020. All MRI were acquired with two 3.0 Tesla MRI scanners (Siemens VIDA and Skyra, Siemens Healthineers, Erlangen, Germany). Axial T2W sequences and axial diffusion-weighted sequences (DWI) with apparent diffusion coefficient maps (ADC) were included in the data set. T2W sequences and ADC maps were annotated by two board-certified radiologists with 6 and 8 years of experience, respectively. For T2W sequences, the central gland (central zone and transitional zone) and peripheral zone were segmented. If areas of suspected prostate cancer (PIRADS score of ≥ 4) were identified on examination, they were segmented in both the T2W sequences and ADC maps. Because restricted diffusion is best seen in DWI images with high b-values, only these images were selected and all images with low b-values were discarded. Data were then anonymized and converted to NIfTI (Neuroimaging Informatics Technology Initiative) format.

SELECTION OF CITATIONS
SEARCH DETAIL
...