Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5744, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459248

ABSTRACT

Global climate change and land use change underlie a need to develop new crop breeding strategies, and crop wild relatives (CWR) have become an important potential source of new genetic material to improve breeding efforts. Many recent approaches assume adaptive trait variation increases towards the relative environmental extremes of a species range, potentially missing valuable trait variation in more moderate or typical climates. Here, we leveraged distinct genotypes of wild chickpea (Cicer reticulatum) that differ in their relative climates from moderate to more extreme and perform targeted assessments of drought and heat tolerance. We found significance variation in ecophysiological function and stress tolerance between genotypes but contrary to expectations and current paradigms, it was individuals from more moderate climates that exhibited greater capacity for stress tolerance than individuals from warmer and drier climates. These results indicate that wild germplasm collection efforts to identify adaptive variation should include the full range of environmental conditions and habitats instead of only environmental extremes, and that doing so may significantly enhance the success of breeding programs broadly.


Subject(s)
Cicer , Humans , Cicer/genetics , Plant Breeding , Phenotype , Genotype , Extreme Environments
2.
New Phytol ; 241(4): 1435-1446, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37997699

ABSTRACT

Our ability to predict temperature responses of leaf respiration in light and darkness (RL and RDk ) is essential to models of global carbon dynamics. While many models rely on constant thermal sensitivity (characterized by Q10 ), uncertainty remains as to whether Q10 of RL and RDk are actually similar. We measured short-term temperature responses of RL and RDk in immature and mature leaves of two evergreen tree species, Castanopsis carlesii and Ormosia henry in an open field. RL was estimated by the Kok method, the Yin method and a newly developed Kok-iterCc method. When estimated by the Yin and Kok-iterCc methods, RL and RDk had similar Q10 (c. 2.5). The Kok method overestimated both Q10 and the light inhibition of respiration. RL /RDk was not affected by leaf temperature. Acclimation of respiration in summer was associated with a decline in basal respiration but not in Q10 in both species, which was related to changes in leaf nitrogen content between seasons. Q10 of RL and RDk in mature leaves were 40% higher than in immature leaves. Our results suggest similar Q10 values can be used to model RL and RDk while leaf development-associated changes in Q10 require special consideration in future respiration models.


Subject(s)
Photosynthesis , Respiration , Temperature , Darkness , Seasons , Plant Leaves
3.
Nat Commun ; 14(1): 7173, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935674

ABSTRACT

Tradeoffs between the energetic benefits and costs of traits can shape species and trait distributions along environmental gradients. Here we test predictions based on such tradeoffs using survival, growth, and 50 photosynthetic, hydraulic, and allocational traits of ten Eucalyptus species grown in four common gardens along an 8-fold gradient in precipitation/pan evaporation (P/Ep) in Victoria, Australia. Phylogenetically structured tests show that most trait-environment relationships accord qualitatively with theory. Most traits appear adaptive across species within gardens (indicating fixed genetic differences) and within species across gardens (indicating plasticity). However, species from moister climates have lower stomatal conductance than others grown under the same conditions. Responses in stomatal conductance and five related traits appear to reflect greater mesophyll photosynthetic sensitivity of mesic species to lower leaf water potential. Our data support adaptive cross-over, with realized height growth of most species exceeding that of others in climates they dominate. Our findings show that pervasive physiological, hydraulic, and allocational adaptations shape the distributions of dominant Eucalyptus species along a subcontinental climatic moisture gradient, driven by rapid divergence in species P/Ep and associated adaptations.


Subject(s)
Eucalyptus , Trees , Trees/physiology , Plant Leaves/physiology , Climate , Photosynthesis , Water , Eucalyptus/physiology , Victoria
4.
J Biogeogr ; 50(2): 291-301, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37082564

ABSTRACT

Aim: Well-managed semi-arid forests help offset global change by storing significant amounts of carbon above- and belowground and maintaining hydrological cycles. Larger trees have been the focus of many studies due to their carbon storage and habitat quality, yet recruitment and small trees are important components of ecosystem resilience and recovery. Here, we study the impacts of disturbances (including harvesting) on recruitment, mortality and growth for a mixed conifer-broadleaf semi-arid forest type using long-term data. Location: Pilliga Forest in New South Wales, inland eastern Australia. Taxon: Callitris-Eucalyptus forests. Methods: We used data from permanent sample plots (PSPs) spanning 55 years, calculated stand structure, gains and losses and determined reasons for tree death (harvesting, fire, wind, drought and other effects). We extracted climate and fire data for the PSP locations using spatial analysis. Results: Stocking of studied forests remained stable (modest increase in basal area and stem density), despite harvesting and wildfires over 6 decades. Compared to stands in the 1940s and prior to European settlement, current forests are composed of more trees per unit area, and these trees have smaller diameters. Recruitment and sustained presence of small trees have buffered impacts of recurring drought, fire and harvesting. Fires are a common feature of the studied ecosystems and fire impacts have increased in the past 20 years, especially in unmanaged stands, where fires have reduced tree carbon by >50%. Main conclusions: Recruitment and growth of small trees are critical to offset carbon losses due to fire, drought and harvesting. All size classes have important ecological values in semi-arid forests and must be included in long-term monitoring programmes. Long-term data offer unique insights into combined effects of climate change, management and disturbances, especially for fire-prone ecosystems, where small trees are often susceptible to fire.

5.
Nat Commun ; 14(1): 1515, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934100

ABSTRACT

Litter decomposition / accumulation are rate limiting steps in soil formation, carbon sequestration, nutrient cycling and fire risk in temperate forests, highlighting the importance of robust predictive models at all geographic scales. Using a data set for the Australian continent, we show that among a range of models, >60% of the variance in litter mass over a 40-year time span can be accounted for by a parsimonious model with elapsed time, and indices of aridity and litter quality, as independent drivers. Aridity is an important driver of variation across large geographic and climatic ranges while litter quality shows emergent properties of climate-dependence. Up to 90% of variance in litter mass for individual forest types can be explained using models of identical structure. Results provide guidance for future decomposition studies. Algorithms reported here can significantly improve accuracy and reliability of predictions of carbon and nutrient dynamics and fire risk.

6.
Plant Cell Environ ; 45(9): 2573-2588, 2022 09.
Article in English | MEDLINE | ID: mdl-35706133

ABSTRACT

The isohydric-anisohydric continuum describes the relative stringency of stomatal control of leaf water potential (ψleaf ) during drought. Hydroscape area (HA)-the water potential landscape over which stomata regulate ψleaf -has emerged as a useful metric of the iso/anisohydric continuum because it is strongly linked to several hydraulic, photosynthetic and structural traits. Previous research on HA focused on broad ecological patterns involving several plant clades. Here we investigate the relationships between HA and climatic conditions and functional traits across ecologically diverse but closely related species while accounting for phylogeny. Across a macroclimatic moisture gradient, defined by the ratio of mean annual precipitation to mean annual pan evaporation (P/Ep ), HA decreased with increased P/Ep across 10 Eucalyptus species. Greater anisohydry reflects lower turgor loss points and greater hydraulic safety, mirroring global patterns. Larger HA coincides with mesophyll photosynthetic capacity that is more sensitive to ψleaf . Hydroscapes exhibit little plasticity in response to variation in water supply, and the extent of plasticity does not vary with P/Ep of native habitats. These findings strengthen the case that HA is a useful metric for characterizing drought tolerance and water-status regulation.


Subject(s)
Eucalyptus , Droughts , Eucalyptus/physiology , Photosynthesis , Plant Leaves/physiology , Plant Stomata/physiology , Water/physiology
7.
Glob Chang Biol ; 28(16): 4923-4934, 2022 08.
Article in English | MEDLINE | ID: mdl-35490304

ABSTRACT

Increases in terrestrial water-use efficiency (WUE) have been reported in many studies, pointing to potential changes in physiological forcing of global carbon and hydrological cycles. However, gains in WUE are of uncertain magnitude over longer (i.e. >10 years) periods of time largely owing to difficulties in accounting for structural and physiological acclimation. 13 C signatures (i.e. δ13 C) of plant organic matter have long been used to estimate WUE at temporal scales ranging from days to centuries. Mesophyll conductance is a key uncertainty in estimated WUE owing to its influence on diffusion of CO2 to sites of carboxylation. Here we apply new knowledge of mesophyll conductance to 464 δ13 C chronologies in tree-rings of 143 species spanning global biomes. Adjusted for mesophyll conductance, gains in WUE during the 20th century (0.15 ppm year-1 ) were considerably smaller than those estimated from conventional modelling (0.26 ppm year-1 ). Across the globe, mean sensitivity of WUE to atmospheric CO2 was 0.15 ppm ppm-1 . Ratios of internal-to-atmospheric CO2 (on a mole fraction basis; ci /ca ) in leaves were mostly constant over time but differed among biomes and plant taxa-highlighting the significance of both plant structure and physiology. Together with synchronized responses in stomatal and mesophyll conductance, our results suggest that ratios of chloroplastic-to-atmospheric CO2 (cc /ca ) are constrained over time. We conclude that forest WUE may have not increased as much as previously suggested and that projections of future climate forcing via CO2 fertilization may need to be adjusted accordingly.


Subject(s)
Carbon Dioxide , Water , Forests , Photosynthesis/physiology , Plant Leaves/physiology
8.
Sci Data ; 8(1): 254, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593819

ABSTRACT

We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.


Subject(s)
Databases, Factual , Phenotype , Plants , Australia , Plant Physiological Phenomena
9.
Nat Commun ; 12(1): 5194, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465788

ABSTRACT

Reduced stomatal conductance is a common plant response to rising atmospheric CO2 and increases water use efficiency (W). At the leaf-scale, W depends on water and nitrogen availability in addition to atmospheric CO2. In hydroclimate models W is a key driver of rainfall, droughts, and streamflow extremes. We used global climate data to derive Aridity Indices (AI) for forests over the period 1965-2015 and synthesised those with data for nitrogen deposition and W derived from stable isotopes in tree rings. AI and atmospheric CO2 account for most of the variance in W of trees across the globe, while cumulative nitrogen deposition has a significant effect only in regions without strong legacies of atmospheric pollution. The relation of aridity and W displays a clear discontinuity. W and AI are strongly related below a threshold value of AI ≈ 1 but are not related where AI > 1. Tree ring data emphasise that effective demarcation of water-limited from non-water-limited behaviour of stomata is critical to improving hydrological models that operate at regional to global scales.

10.
Tree Physiol ; 41(12): 2438-2453, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34100073

ABSTRACT

Sap velocity measurements are useful in fields ranging from plant water relations to hydrology at a variety of scales. Techniques based on pulses of heat are among the most common methods to measure sap velocity, but most lack ability to measure velocities across a wide range, including very high, very low and negative velocities (reverse flow). We propose a new method, the double-ratio method (DRM), which is robust across an unprecedented range of sap velocities and provides real-time estimates of the thermal diffusivity of wood. The DRM employs one temperature sensor upstream (proximal) and two sensors downstream (distal) to the source of heat. This facilitates several theoretical, heat-based approaches to quantifying sap velocity. We tested the DRM using whole-tree lysimetry in Eucalyptus cypellocarpa L.A.S. Johnson and found strong agreement across a wide range of velocities.


Subject(s)
Eucalyptus , Trees , Hot Temperature , Plant Transpiration , Water , Wood
11.
Microorganisms ; 9(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804229

ABSTRACT

Soil-to-atmosphere methane (CH4) fluxes are dependent on opposing microbial processes of production and consumption. Here we use a soil-vegetation gradient in an Australian sub-alpine ecosystem to examine links between composition of soil microbial communities, and the fluxes of greenhouse gases they regulate. For each soil/vegetation type (forest, grassland, and bog), we measured carbon dioxide (CO2) and CH4 fluxes and their production/consumption at 5 cm intervals to a depth of 30 cm. All soils were sources of CO2, ranging from 49 to 93 mg CO2 m-2 h-1. Forest soils were strong net sinks for CH4, at rates of up to -413 µg CH4 m-2 h-1. Grassland soils varied, with some soils acting as sources and some as sinks, but overall averaged -97 µg CH4 m-2 h-1. Bog soils were net sources of CH4 (+340 µg CH4 m-2 h-1). Methanotrophs were dominated by USCα in forest and grassland soils, and Candidatus Methylomirabilis in the bog soils. Methylocystis were also detected at relatively low abundance in all soils. Our study suggests that there is a disproportionately large contribution of these ecosystems to the global soil CH4 sink, which highlights our dependence on soil ecosystem services in remote locations driven by unique populations of soil microbes. It is paramount to explore and understand these remote, hard-to-reach ecosystems to better understand biogeochemical cycles that underpin global sustainability.

12.
New Phytol ; 230(5): 1844-1855, 2021 06.
Article in English | MEDLINE | ID: mdl-33630331

ABSTRACT

Photosynthetic sensitivity to drought is a fundamental constraint on land-plant evolution and ecosystem function. However, little is known about how the sensitivity of photosynthesis to nonstomatal limitations varies among species in the context of phylogenetic relationships. Using saplings of 10 Eucalyptus species, we measured maximum CO2 -saturated photosynthesis using A-ci curves at several different leaf water potentials (ψleaf ) to quantify mesophyll photosynthetic sensitivity to ψleaf (MPS), a measure of how rapidly nonstomatal limitations to carbon uptake increase with declining ψleaf . MPS was compared to the macroclimatic moisture availability of the species' native habitats, while accounting for phylogenetic relationships. We found that species native to mesic habitats have greater MPS but higher maximum photosynthetic rates during non-water-stressed conditions, revealing a trade-off between maximum photosynthesis and drought sensitivity. Species with lower turgor loss points have lower MPS, indicating coordination among photosynthetic and water-relations traits. By accounting for phylogenetic relationships among closely related species, we provide the first compelling evidence that MPS in Eucalyptus evolved in an adaptive fashion with climatically determined moisture availability, opening the way for further study of this poorly explored dimension of plant adaptation to drought.


Subject(s)
Eucalyptus , Droughts , Ecosystem , Photosynthesis , Phylogeny , Plant Leaves , Water
13.
Oecologia ; 195(3): 759-771, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33595714

ABSTRACT

Trade-offs between photosynthesis and the costs of resource capture inform economic strategies of plants across environmental gradients and result in predictable variation in leaf traits. However, understudied functional groups like hemiparasites that involve dramatically different strategies for resource capture may have traits that deviate from expectations. We measured leaf traits related to gas exchange in mistletoes and their eucalypt hosts along a climatic gradient in relative moisture supply, measured as the ratio of precipitation to pan evaporation (P/Ep), in Victoria, Australia. We compared traits for mistletoes vs. hosts as functions of relative moisture supply and examined trait-trait correlations in both groups. Eucalypt leaf traits responded strongly to decreasing P/Ep, consistent with economic theory. Leaf area and specific leaf area (SLA) decreased along the P/Ep gradient, while C:N ratio, leaf thickness, N per area, and δ13C all increased. Mistletoes responded overall less strongly to P/Ep based on multivariate analyses; individual traits sometimes shifted in parallel with those of hosts, but SLA, leaf thickness, and N per area showed no significant change across the gradient. For mistletoes, leaf thickness was inversely related to leaf dry matter content (LDMC), with no relationship between SLA and mass-based N. In mistletoes, reduced costs of transpiration (reflecting their lack of roots) and abundant succulent leaf tissue help account for observed differences from their eucalypt hosts. Trait-based analysis of atypical functional types such as mistletoes help refine hypotheses based on plant economics and specialized adaptations to resource limitation.


Subject(s)
Mistletoe , Photosynthesis , Plant Leaves , Plants , Victoria
14.
Glob Chang Biol ; 26(7): 3756-3758, 2020 07.
Article in English | MEDLINE | ID: mdl-32298519

ABSTRACT

Climates-especially seasonal and long-term droughts-and fuel loads combine to determine risks of wildfires across much of Australia. Here we illustrate how long-term accumulations of fuel combined with a serious drought to drive the behaviour and extent of recent fires in South-eastern Australia. This article is a commentary on Nolan et al. 26, 1039-1041.


Subject(s)
Fires , Wildfires , Australia , Seasons , South Australia
15.
Nat Commun ; 10(1): 3661, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413322

ABSTRACT

Rates of change in intrinsic water use efficiency (W) of trees relative to those in atmospheric [CO2] (ca) have been mostly assessed via short-term studies (e.g., leaf analysis, flux analysis) and/or step increases in ca (e.g., FACE studies). Here we use compiled data for abundances of carbon isotopes in tree stems to show that on decadal scales, rates of change (dW/dca) vary with location and rainfall within the global tropics. For the period 1915-1995, and including corrections for mesophyll conductance and photorespiration, dW/dca for drier tropical forests (receiving ~ 1000 mm rainfall) were at least twice that of the wettest (receiving ~ 4000 mm). The data also empirically confirm theorized roles of tropical forests in changes in atmospheric 13C/12C ratios (the 13C Suess Effect). Further formal analysis of geographic variation in decade-to-century scale dW/dca will be needed to refine current models that predict increases in carbon uptake by forests without hydrological cost.

16.
Tree Physiol ; 39(3): 495-502, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30299505

ABSTRACT

Anatomical traits such as xylem conduit diameter and vessel connectivity are fundamental characteristics of the hydraulic architecture of vascular plants. Stem xylem conduits are narrow at the stem apex, and this confers resistance to embolisms that might otherwise be induced by large, negative water potentials at the top of tall trees. Below the apex, conduits progressively widen and this characteristic minimizes effects of path length on total hydraulic resistance. While interconnections among xylem vessels have been noted for decades, their role(s) are not fully clarified. For example, we do not know if they allow water to bypass embolized vessels, or increase the risk of spread of embolisms, or how their arrangement varies within a tree. Here we demonstrate the benefit of removing the independent effect of stem length on assessment of effects of external (e.g., climatic) factors on such xylem traits. We measured the hydraulic diameter (Dh) and vessel conductivity index (VCI) along the stem of 21 shrubs/trees of similar height (1.19 < H < 5.45 m) belonging to seven Acacia species, across a wide aridity gradient in Australia. All trees showed similar scaling exponents of Dh (b = 0.33) and VCI (b = 0.53) vs axial distance from the apex (L), thus conforming with general patterns in woody plants. After de-trending for L, neither Dh (P = 0.21) nor VCI (P = 0.109) differed across the aridity gradient. We found that across a wide gradient of aridity, climate had no effect on xylem anatomy of Acacia spp, which was instead dictated by axial distances from stem apices. We argue that the use of standardization procedures to filter out intrinsic patterns of vascular traits is an essential step in assessing climate-driven modifications of xylem architecture.


Subject(s)
Botany/methods , Trees/anatomy & histology , Xylem/anatomy & histology , Acacia/anatomy & histology , Acacia/metabolism , Climate , Environment , New South Wales , Species Specificity , Trees/metabolism , Victoria , Water/metabolism , Xylem/metabolism
17.
Sci Total Environ ; 615: 1000-1009, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29751404

ABSTRACT

Empirical evidence from Australia shows that fuel reduction burning significantly reduces the incidence and extent of unplanned fires. However, the integration of environmental values into fire management operations is not yet well-defined and requires further research and development. WAVES, a plant growth model that incorporates Soil-Vegetation-Atmosphere Transfer, was used to simulate the hydrological and ecological effects of three fuel management scenarios on a forest ecosystem. WAVES was applied using inputs from a set of forest plots for one year after three potential scenarios: (1) all litter removed, (2) all litter and 50% of the understorey removed, (3) all litter and understorey removed. Modelled outputs were compared with sites modelled with no-fuel reduction treatment (Unburnt). The key change between unburnt and fuel reduced forests was a significant increase in soil moisture after fire. Predictions of the recovery of aboveground carbon as plant biomass were driven by model structure and thus variability in available light and soil moisture at a local scale. Similarly, effects of fuel reduction burning on water processes were mainly due to changes in vegetation interception capacity (i.e. regrowth) and soil evaporation. Predicted effects of fuel reduction burning on total evapotranspiration (ET) - the major component of water balance - were marginal and not significant, even though a considerable proportion of ET had effectively been transferred from understorey to overstorey. In common with many plant growth models, outputs from WAVES are dictated by the assumption that overstorey trees continue to grow irrespective of their age or stage of maturity. Large areas of eucalypt forests and woodlands in SE Australia are well beyond their aggrading phase and are instead over-mature. The ability of these forests to rapidly respond to greater availability of water remains uncertain.

18.
Trends Plant Sci ; 23(6): 539-550, 2018 06.
Article in English | MEDLINE | ID: mdl-29559299

ABSTRACT

Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF.


Subject(s)
Crops, Agricultural/metabolism , Fabaceae/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Water/metabolism , Biological Transport , Crops, Agricultural/genetics , Fabaceae/genetics , Plant Breeding , Plant Stomata/physiology
19.
Plant Cell Environ ; 41(6): 1369-1382, 2018 06.
Article in English | MEDLINE | ID: mdl-29424929

ABSTRACT

We used instantaneous temperature responses of CO2 -respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light-saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol-1 when supply of N was weak, to ~70 kJ mol-1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20-40 °C) could be fully described by 2 exponent parameters of an Arrhenius-type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment-induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source-sink imbalances in carbohydrate utilization, which in combination with shifts in carbon-flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.


Subject(s)
Eucalyptus/physiology , Nitrogen/pharmacology , Plant Leaves/physiology , Temperature , Analysis of Variance , Carbon Dioxide/metabolism , Cell Respiration/drug effects , Eucalyptus/drug effects , Eucalyptus/growth & development , Linear Models , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Principal Component Analysis , Solubility , Starch/analysis , Sugars/analysis , Time Factors
20.
New Phytol ; 217(4): 1475-1483, 2018 03.
Article in English | MEDLINE | ID: mdl-29178286

ABSTRACT

In nonagricultural systems, the relationship between intrinsic water-use efficiency (WUEi ) and leaf nitrogen (Narea ) is known to be stronger for legumes than for nonlegumes. We tested whether these relationships are retained for major agricultural legumes and nonlegumes. We compared the response to N nutrition of WUEi (and its component parts, photosynthesis (Asat ) and stomatal conductance (gs )) for legumes Cicer arietinum, Glycine max, Lupinus alba and Vicia faba, nonlegume dicots Brassica napus and Helianthus annus, and nonlegume cereals Hordeum vulgare and Triticum aestivum. Surprisingly, and in contrast to studied cereals and nonlegume dicots, Narea was positively related to photosynthesis in the legumes, explaining nearly half of the variance in Asat . WUEi was tightly coupled to Narea for agricultural legumes and nonlegume dicots, but not for cereal crops. Our analysis suggests that breeding efforts to reduce gs in legumes could increase WUEi by 120-218% while maintaining Asat at nonlegume values. Physiologically informed breeding of legumes can enhance sustainable agriculture by reducing requirements for water and N.


Subject(s)
Crops, Agricultural/physiology , Edible Grain/physiology , Fabaceae/physiology , Nitrogen/pharmacology , Crops, Agricultural/drug effects , Edible Grain/drug effects , Fabaceae/drug effects , Photosynthesis/drug effects , Plant Stomata/drug effects , Plant Stomata/physiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...