Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554102

ABSTRACT

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Subject(s)
Bacteriophage lambda , DNA-Binding Proteins , Models, Molecular , Viral Proteins , Bacteriophage lambda/genetics , Crystallography, X-Ray , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , Protein Multimerization , DNA, Viral/genetics , DNA, Viral/metabolism , Mutation , Lysogeny , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/metabolism , DNA/chemistry
2.
Nat Commun ; 13(1): 6368, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289207

ABSTRACT

Poleroviruses, enamoviruses, and luteoviruses are icosahedral, positive sense RNA viruses that cause economically important diseases in food and fiber crops. They are transmitted by phloem-feeding aphids in a circulative manner that involves the movement across and within insect tissues. The N-terminal portion of the viral readthrough domain (NRTD) has been implicated as a key determinant of aphid transmission in each of these genera. Here, we report crystal structures of the NRTDs from the poleroviruses turnip yellow virus (TuYV) and potato leafroll virus (PLRV) at 1.53-Å and 2.22-Å resolution, respectively. These adopt a two-domain arrangement with a unique interdigitated topology and form highly conserved dimers that are stabilized by a C-terminal peptide that is critical for proper folding. We demonstrate that the PLRV NRTD can act as an inhibitor of virus transmission and identify NRTD mutant variants that are lethal to aphids. Sequence conservation argues that enamovirus and luteovirus NRTDs will follow the same structural blueprint, which affords a biological approach to block the spread of these agricultural pathogens in a generalizable manner.


Subject(s)
Aphids , Luteoviridae , Luteovirus , Animals , Luteoviridae/genetics , Luteovirus/genetics , Phloem , Plant Diseases
3.
J Struct Biol ; 214(1): 107811, 2022 03.
Article in English | MEDLINE | ID: mdl-34813955

ABSTRACT

Luteoviruses, poleroviruses, and enamoviruses are insect-transmitted, agricultural pathogens that infect a wide array of plants, including staple food crops. Previous cryo-electron microscopy studies of virus-like particles show that luteovirid viral capsids are built from a structural coat protein that organizes with T = 3 icosahedral symmetry. Here, we present the crystal structure of a truncated version of the coat protein monomer from potato leafroll virus at 1.80-Å resolution. In the crystal lattice, monomers pack into flat sheets that preserve the two-fold and three-fold axes of icosahedral symmetry and show minimal structural deviations when compared to the full-length subunits of the assembled virus-like particle. These observations have important implications in viral assembly and maturation and suggest that the CP N-terminus and its interactions with RNA play an important role in generating capsid curvature.


Subject(s)
Luteoviridae , Virus Assembly , Capsid/chemistry , Capsid Proteins/chemistry , Cryoelectron Microscopy
4.
Mol Microbiol ; 116(6): 1464-1475, 2021 12.
Article in English | MEDLINE | ID: mdl-34687258

ABSTRACT

Invasion of the intestinal epithelium is an essential but energetically expensive survival strategy and is, therefore, tightly regulated by using specific cues from the environment. The enteric pathogen Salmonella controls its invasion machinery through the elegant coordination of three AraC-type transcription activators, HilD, HilC, and RtsA. Most environmental signals target HilD to control invasion, whereas HilC and RtsA are known only to augment these effects on HilD. Here we show that a fatty acid found in the murine colon, cis-2-hexadecenoic acid (c2-HDA), represses Salmonella invasion by directly targeting HilC and RtsA, in addition to HilD. c2-HDA directly binds each of these regulators and inhibits their attachment to DNA targets, repressing invasion even in the absence of HilD. Fatty acid binding, however, does not affect HilC and RtsA protein stability, unlike HilD. Importantly, we show that HilC and RtsA are highly effective in restoring HilD production and invasion gene expression after elimination of the repressive fatty acid c2-HDA. Together, these results illuminate a precise mechanism by which HilC and RtsA may modulate invasion as Salmonella navigates through different regions of the intestine, contributing to our understanding of how this enteric pathogen senses and adapts to a diverse intestinal environment while maintaining its virulence.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Intestines/metabolism , Palmitic Acids/metabolism , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella typhimurium/metabolism , Transcription Factors/metabolism , Animals , Bacterial Proteins/genetics , Genomic Islands , Host-Pathogen Interactions , Humans , Intestines/microbiology , Mice , Protein Binding , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Transcription Factors/genetics , Virulence
5.
Mol Microbiol ; 116(4): 1044-1063, 2021 10.
Article in English | MEDLINE | ID: mdl-34379857

ABSTRACT

The CI and Cro repressors of bacteriophage λ create a bistable switch between lysogenic and lytic growth. In λ lysogens, CI repressor expressed from the PRM promoter blocks expression of the lytic promoters PL and PR to allow stable maintenance of the lysogenic state. When lysogens are induced, CI repressor is inactivated and Cro repressor is expressed from the lytic PR promoter. Cro repressor blocks PRM transcription and CI repressor synthesis to ensure that the lytic state proceeds. RexA and RexB proteins, like CI, are expressed from the PRM promoter in λ lysogens; RexB is also expressed from a second promoter, PLIT , embedded in rexA. Here we show that RexA binds CI repressor and assists the transition from lysogenic to lytic growth, using both intact lysogens and defective prophages with reporter genes under the control of the lytic PL and PR promoters. Once lytic growth begins, if the bistable switch does return to the immune state, RexA expression lessens the probability that it will remain there, thus stabilizing the lytic state and activation of the lytic PL  and PR  promoters. RexB modulates the effect of RexA and may also help establish phage DNA replication as lytic growth ensues.


Subject(s)
Bacteriophage lambda/physiology , DNA Replication , Lysogeny , Repressor Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , DNA, Viral , Gene Expression Regulation, Viral , Genes, Viral , Promoter Regions, Genetic , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism
6.
J Struct Biol ; 211(3): 107572, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32652237

ABSTRACT

McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Desulfurococcaceae/chemistry , RNA-Binding Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites , Crystallography, X-Ray , DNA, Archaeal/chemistry , DNA, Archaeal/metabolism , Models, Molecular , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Domains , Protein Folding , RNA Splicing Factors/chemistry , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
7.
Nucleic Acids Res ; 48(5): 2762-2776, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32009148

ABSTRACT

OLD family nucleases contain an N-terminal ATPase domain and a C-terminal Toprim domain. Homologs segregate into two classes based on primary sequence length and the presence/absence of a unique UvrD/PcrA/Rep-like helicase gene immediately downstream in the genome. Although we previously defined the catalytic machinery controlling Class 2 nuclease cleavage, degenerate conservation of the C-termini between classes precludes pinpointing the analogous residues in Class 1 enzymes by sequence alignment alone. Our Class 2 structures also provide no information on ATPase domain architecture and ATP hydrolysis. Here we present the full-length structure of the Class 1 OLD nuclease from Thermus scotoductus (Ts) at 2.20 Å resolution, which reveals a dimerization domain inserted into an N-terminal ABC ATPase fold and a C-terminal Toprim domain. Structural homology with genome maintenance proteins identifies conserved residues responsible for Ts OLD ATPase activity. Ts OLD lacks the C-terminal helical domain present in Class 2 OLD homologs yet preserves the spatial organization of the nuclease active site, arguing that OLD proteins use a conserved catalytic mechanism for DNA cleavage. We also demonstrate that mutants perturbing ATP hydrolysis or DNA cleavage in vitro impair P2 OLD-mediated killing of recBC-Escherichia coli hosts, indicating that both the ATPase and nuclease activities are required for OLD function in vivo.


Subject(s)
Adenosine Triphosphate/metabolism , Biocatalysis , Endonucleases/chemistry , Endonucleases/metabolism , Thermus/enzymology , Adenosine Triphosphatases/chemistry , Conserved Sequence , Hydrolysis , Metals/metabolism , Models, Molecular , Mutation/genetics , Protein Domains
8.
mBio ; 10(1)2019 02 19.
Article in English | MEDLINE | ID: mdl-30782657

ABSTRACT

The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that are predicted to hydrolyze PG to facilitate cell growth. Two of these (ShyA and ShyC) are conditionally essential housekeeping EPs, while the third (ShyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its d,d-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at concentrations that inhibit ShyA and ShyC. This insensitivity to metal chelation is likely what enables ShyB to substitute for other EPs during zinc starvation. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated EPs, suggesting that this adaptation to zinc starvation is employed by other Gram-negative bacteria.IMPORTANCE Bacteria encode a variety of adaptations that enable them to survive during zinc starvation, a condition which is encountered both in natural environments and inside the human host. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, we have identified a novel member of this zinc starvation response, a cell wall hydrolase that retains function and is conditionally essential for cell growth in low-zinc environments. Other Gram-negative bacteria contain homologs that appear to be under similar regulatory control. These findings are significant because they represent, to our knowledge, the first evidence that zinc homeostasis influences cell wall turnover. Anti-infective therapies commonly target the bacterial cell wall; therefore, an improved understanding of how the cell wall adapts to host-induced zinc starvation could lead to new antibiotic development. Such therapeutic interventions are required to combat the rising threat of drug-resistant infections.


Subject(s)
Endopeptidases/metabolism , Gene Expression Regulation, Bacterial , Peptidoglycan/metabolism , Vibrio cholerae/enzymology , Vibrio cholerae/genetics , Zinc/metabolism , Coenzymes/metabolism , DNA Transposable Elements , Endopeptidases/genetics , Gene Expression Profiling , Hydrolysis , Mutagenesis, Insertional , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...