Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 741575, 2021.
Article in English | MEDLINE | ID: mdl-34733904

ABSTRACT

The aim of this worldwide survey was to determine owner-reported frequency of pathogen transmission to humans living in or in contact with households feeding their pets raw, minimally processed (MP) diets. A total of 5,611 responses were gathered from 62 countries with 77.1% of households feeding only MP diets to dog and/or cat(s) with no confirmed cases of pathogen transmission or infection by laboratory testing. Eleven households (0.20%; 95% CI, 0.10-0.36) were classified as having experienced "probable" transmission, and 20 households (0.36%; 95% CI, 0.22-0.56) were classified as having experienced "possible" transmission to result in a total of 31 households (0.55%; 95% CI, 0.38-0.79) being identified as potential cases of transmission. The remainder of households (n = 5,580 = 99.45%; 95% CI, 99.21-99.62) were not considered to have experienced potential transmission of foodborne pathogens based on their responses to the survey. The most frequently reported pathogens were Salmonella (n = 11, 0.2%), Campylobacter (n = 6, 0.1%), and Escherichia coli (n = 4, 0.1%), with the most common age group being adults age 18-65 (n = 29, 78.4% of cases). Beef and chicken were the most common proteins reported as being fed in case households, although this was not associated with pathogen transmission. Households feeding a greater number of different protein sources, including pork, turkey, duck, rabbit, and salmon, were associated with decreased risk of pathogen transmission. Additional risk factors associated with pathogen transmission included preparing either MP diets in a separate location, with different utensils than human food, mixing MP diets with dry (kibble) diets and feeding a limited variety of protein sources. Based on the results of this survey, confirmed pathogen transmission from MP diets to humans appears to be rare. We conclude that potential or probable cases of pathogen transmission is likely dependent upon hygiene and food safety measures, and more education surrounding food safety should reduce risk.

2.
Acta Vet Scand ; 61(1): 42, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31500653

ABSTRACT

BACKGROUND: Overweight and obesity have been adversely associated with longevity in dogs but there is scarce knowledge on the relation between body composition and lifespan. We aimed to investigate the effects of body composition, and within-dog changes over time, on survival in adult Labradors using a prospective cohort study design. The dogs had a median age of 6.5 years at study start and were kept in similar housing and management conditions throughout. The effects of the various predictors, including the effect of individual monthly-recorded change in body weight as a time varying covariate, were evaluated using survival analysis. RESULTS: All dogs were followed to end-of-life; median age at end-of-life was 14.0 years. Body composition was measured annually with dual-energy x-ray absorptiometer (DEXA) scans between 6.2 and 17.0  years. All 39 dogs had DEXA recorded at 8, 9 and 10 years of age. During the study the mean (± SD) percent of fat (PF) and lean mass (PL) was 32.8 (± 5.6) and 64.2 (± 5.5) %, respectively, with a mean lean:fat ratio (LFR) of 2.1 (± 0.6); body weight (BW) varied from 17.5 to 44.0 kg with a mean BW change of 9.9 kg (± 3.0). There was increased hazard of dying for every kg increase in BW at 10 years of age; for each additional kg of BW at 10 years, dogs had a 19% higher hazard (HR = 1.19, P = 0.004). For the change in both lean mass (LM) and LFR variables, it was protective to have a higher lean and/or lower fat mass (FM) at 10 years of age compared to 8 years of age, although the HR for change in LM was very close to 1.0. For age at study start, older dogs had an increased hazard. There was no observed effect for the potential confounders sex, coat colour and height at shoulders, or of the time-varying covariate. CONCLUSIONS: These results suggest that even rather late-life control efforts on body weight and the relationship between lean and fat mass may influence survival in dogs. Such "windows of opportunity" can be used to develop healthcare strategies that would help promote an increased healthspan in dogs.


Subject(s)
Body Composition/physiology , Body Weight/physiology , Dogs/physiology , Longevity/physiology , Adipose Tissue , Animals , Longitudinal Studies , Survival Analysis
3.
Acta Vet Scand ; 58(1): 29, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27169845

ABSTRACT

BACKGROUND: The aim of this study was to describe the longevity and causes of mortality in 39 (12 males, 27 females) pedigree adult neutered Labrador retrievers with a median age of 6.5 years at the start of the study and kept under similar housing and management conditions. Body condition score was maintained between two and four on a 5-point scale by varying food allowances quarterly. The impact of change in body weight (BW) and body composition on longevity was analysed using linear mixed models with random slopes and intercepts. RESULTS: On 31 July 2014, 10 years after study start, dogs were classified into three lifespan groups: 13 (33 %) Expected (≥9 to ≤12.9 years), 15 (39 %) Long (≥13 to ≤15.5 years) and 11 (28 %) Exceptional (≥15.6 years) with five still alive. Gender and age at neutering were not associated with longevity (P ≥ 0.06). BW increased similarly for all lifespan groups up to age 9, thereafter, from 9 to 13 years, Exceptional dogs gained and Long-lifespan dogs lost weight (P = 0.007). Dual-energy x-ray absorptiometer scans revealed that absolute fat mass increase was slower to age 13 for Long compared with Expected lifespan dogs (P = 0.003) whilst all groups lost a similar amount of absolute lean mass (P > 0.05). Percent fat increase and percent lean loss were slower, whilst the change in fat:lean was smaller, in both the Exceptional and Long lifespan compared with Expected dogs to age 13 (P ≤ 0.02). Total bone mineral density was significantly lower for Expected compared to Exceptional and Long lifespan dogs (P < 0.04). CONCLUSIONS: This study shows that life-long maintenance of lean body mass and attenuated accumulation of body fat were key factors in achieving a longer lifespan. The results suggest that a combination of a high quality plane of nutrition with appropriate husbandry and healthcare are important in obtaining a greater than expected proportion of Labrador retrievers living well beyond that of the expected breed lifespan: 89.7 % (95 % CI 74.8-96.7 %) dogs were alive at 12 years of age and 28.2 % (95 % CI 15.6-45.1 %) reaching an exceptional lifespan of ≥15.6 years.


Subject(s)
Aging/physiology , Body Composition/physiology , Dogs/physiology , Longevity/physiology , Absorptiometry, Photon , Adipose Tissue/diagnostic imaging , Adipose Tissue/physiology , Animals , Body Weight/physiology , Bone Density/physiology , Dogs/anatomy & histology , Female , Longitudinal Studies , Male , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...