Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Graph Model ; 32: 39-48, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22070999

ABSTRACT

Semaxanib (SU5416) and 3-[4'-fluorobenzylidene]indolin-2-one (SU5205) are structurally similar drugs that are able to inhibit vascular endothelial growth factor receptor-2 (VEGFR2), but the former is 87 times more effective than the latter. Previously, SU5205 was used as a radiolabelled inhibitor (as surrogate for SU5416) and a radiotracer for positron emission tomography (PET) imaging, but the compound exhibited poor stability and only a moderate IC(50) toward VEGFR2. In the current work, the relationship between the structure and activity of these drugs as VEGFR2 inhibitors was studied using 3D-QSAR, docking and molecular dynamics (MD) simulations. First, comparative molecular field analysis (CoMFA) was performed using 48 2-indolinone derivatives and their VEGFR2 inhibitory activities. The best CoMFA model was carried out over a training set including 40 compounds, and it included steric and electrostatic fields. In addition, this model gave satisfactory cross-validation results and adequately predicted 8 compounds contained in the test set. The plots of the CoMFA fields could explain the structural differences between semaxanib and SU5205. Docking and molecular dynamics simulations showed that both molecules have the same orientation and dynamics inside the VEGFR2 active site. However, the hydrophobic pocket of VEGFR2 was more exposed to the solvent media when it was complexed with SU5205. An energetic analysis, including Embrace and MM-GBSA calculations, revealed that the potency of ligand binding is governed by van der Waals contacts.


Subject(s)
Indoles/chemistry , Molecular Dynamics Simulation , Pyrroles/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Binding Sites , Catalytic Domain , Computer Simulation , Humans , Indoles/pharmacology , Models, Molecular , Pyrroles/pharmacology , Quantitative Structure-Activity Relationship , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL