Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(22): 9578-9589, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771595

ABSTRACT

There are several applications for irradiating materials with protons that could provide alternative methodologies to synthesize and induce the formation of new compounds of different size scales. In this study, we explored the effects of proton irradiation oncommercial glass silicate that was previously subjected to a Cu+-Na+ ion exchange (IE) treatment at 600 °C for a duration of 60 min. The ion-exchanged glass samples were irradiated with protons (p+) of 2 MeV energy at doses in the range of thousands of grays (3.3 × 103, 7.9 × 103 Gy) and hundreds of thousands of grays (3.6 × 105 Gy). Significant changes in the optical and structural properties were observed post the radiation treatment. The UV-Visible absorption spectra of the irradiated samples revealed the appearance of overlapping absorption bands, which could be deconvoluted into three Gaussian-shaped bands peaking at 566, 620 and 680 nm. These three bands could be attributed to the surface plasmon resonance (SPR) of copper nanoparticles, non-bridging oxygen hole centers (NBOHCs) and self-trapped hole (STH) defects, respectively. Prominent photoluminescence (PL) was observed in the Cu-exchanged and irradiated samples, mainly induced by the presence of both Cu+ and Cu2O. Increasing the irradiation dose led to an increase in the PL intensity due to the conversion of Cu2+ ions into Cu+. This result was confirmed by electron paramagnetic resonance (EPR) spectroscopy that shows a decrease in the Cu2+ signal when increasing the dose of proton exposure. Transmission electron microscopy (TEM) and high-resolution TEM (TEM and HRTEM) observations confirmed the presence of copper nanoparticles (CuNPs) in the doped and p+ irradiated Cu-exchanged glass silicate samples. These CuNPs were found to be crystalline with an average size of 12.39 nm.

2.
J Phys Chem C Nanomater Interfaces ; 126(18): 8047-8055, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35592737

ABSTRACT

Complex vanadates of tantalum(V), such as ATa2V2O11 (A = Sr, Pb), are rare and underrated materials, which have potential application domains that could be substantially expanded, mitigating the existing controversy on their atomic and electronic organization. Herein, we present a thorough structural examination combining synchrotron powder X-ray diffraction-aided distortion mode analysis with computational methods to study hettotypes of SrTa2V2O11 (STVO) and PbTa2V2O11 (PTVO). Being distinct from the perovskite family due to the presence of [VO4] groups, both compounds are polar dielectric materials with certain similarities to SBT and PBT Aurivillius phases. Applying the model of anions of metallic matrices to the analysis of electron localization functions calculated on top of as-established equilibrium structures helps retrace the effects in the Sr and Pb surroundings on the respective crystal packings of STVO and PTVO.

3.
ACS Appl Bio Mater ; 5(4): 1648-1657, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35324139

ABSTRACT

Calcium phosphate phases are among the most widely accepted compounds for biomaterial applications, of which the resorbable phases have gained particular attention in recent years. Brushite and its anhydrous form monetite are among the most interesting resorbable calcium phosphate phases that can be applied as cements and for in situ fabrication of three-dimensional (3D) implants. Of these two dicalcium phosphate compounds, monetite is more stable and undergoes slower degradation than brushite. The purpose of the current study is to synthesize and dope monetite with the antimicrobial elements silver and zinc and the osteoinductive element strontium and investigate the possible structural variations as well as their biocompatibility and antimicrobial effectiveness. For this, powder X-ray diffraction (PXRD), energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and cryo-transmission electron microscopy (cryo-TEM) were used to thoroughly study the synthesized structures. Moreover, the ASTM E-2149-01 protocol and a cell proliferation assay were used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) and the cytocompatibility of the different phases with the Soas-2 cell line, respectively. The results confirm the successful synthesis and doping procedures, such that zinc was the most incorporated element into the monetite phase and strontium was the least incorporated element. The microbiological studies revealed that silver is a very effective antimicrobial agent at low concentrations but unsuitable at high concentrations because its cytotoxicity would prevail. On the other hand, doping the compounds with zinc led to a reasonable antimicrobial activity without compromising the biocompatibility to obviously high concentrations. The study also highlights that strontium, widely known for its osteoinductivity, bears an antimicrobial effect at high concentrations. The generated doped compounds could be beneficial for prospective studies as bone cements or for scaffold biomaterial applications.


Subject(s)
Silver , Strontium , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Calcium Phosphates/pharmacology , Prospective Studies , Silver/pharmacology , Strontium/pharmacology , Zinc/pharmacology
4.
Biosens Bioelectron ; 200: 113926, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34990956

ABSTRACT

In this work, an unprecedented study exploring the role that slight changes into the Pd/Au proportion have in the electrocatalytic activity of bimetallic Pd-AuNPs toward the oxygen reduction reaction (ORR) is conducted. In particular, a careful control of the amount of Au atoms introduced in the cluster and the evaluation of the optimum Pd:Au ratio for getting the maximum catalytic activity is performed for the first time. First, PdNPs are synthesized by alcohol reduction in the presence of polyvinylpyrrolidone, and gold atoms are selectively introduced on vertex or corner positions of the cluster in different amounts following a galvanic substitution procedure. Average elemental analysis done relying on EDX spectroscopy allows to evaluate the Pd:Au ratio in the Pd-AuNPs obtained. Lineal sweep voltammetry and chronoamperometry are used for the evaluation of the Pd-AuNPs electrocatalytic activity toward ORR at a neutral pH compared to PdNPs and AuNPs alone. Our results indicate that, the synergy between both metals is strongly enhanced when the amount of gold is controlled and occupies the more reactive positions of the cluster, reaching a maximum activity for the NPs containing a 30% of gold, while an excess of this metal leads to a decrease in such activity, as a shelter of the PdNPs is achieved. Chronoamperometric analysis allows the quantification of the optimal Pd-AuNPs at over 6 × 109 NPs/mL levels. Such optimal Pd-AuNPs were used as tags, taking advantage of the bio-functionalities of gold present in the cluster, in a proof-of-concept electrochemical immunosensor for the detection of hyaluronidase wound infection biomarker, using magnetic beads as platforms. Hyaluronidase was detected at levels as low as 50 ng/mL (0.02 U/mL; 437 U/mg) with good reproducibility (RSD below 8%) and selectivity (evaluated against bovine serum albumin, immunoglobulin G and lysozyme). The low matrix effects inherent to the use of magnetic bead platforms allowed us to discriminate between wound exudates with both sterile and infected ulcers without sample pre-treatment. This novel electrocatalytic immunoassay has the advantage, over common methods for NP tags electrochemical detection, of the signal generation in the same neutral medium where the immunoassay takes place (10 mM PBS pH 7.4), avoiding the use of additional and hazardous reagents, bringing it closer to their use as point-of-care devices. Overall, our findings may be of great interest not only for biosensing, but also for applications such as energy converting on fuel cells, in which the ORR has a pivotal role.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Wound Infection , Biomarkers , Electrochemical Techniques , Gold , Humans , Immunoassay , Limit of Detection , Palladium , Reproducibility of Results
5.
Chemphyschem ; 22(24): 2550-2561, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34609055

ABSTRACT

Considering the vast importance of peptide and protein interactions with inorganic surfaces, probing hydrogen bonding during their adsorption on metal oxide surfaces is a relevant task that could shed light on the essential features of their interplay. This work is devoted to studying the dipeptides' adsorption on anatase nanoparticles (ANs) in light and heavy water to reveal differences arising upon the change of the major hydrogen bonding carrier. Thermodynamic study of six native dipeptides' adsorption on ANs in both media shows a strong influence of the solvent on the Gibbs free energy and the effect of side-chain mobile protons on the entropy of the process. The adsorption is endothermic irrespective of the medium and is entropy-driven. Computer simulations of peptide adsorption in both media shows similarity in binding via an amino group and demonstrates structural features of protonated and deuterated peptides in obtained complexes. Calculated peptide- anatase nanoparticle (AN) descriptors indicate surface oxygens as points of peptide-nanoparticle contacts.

6.
Mater Sci Eng C Mater Biol Appl ; 126: 112168, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082969

ABSTRACT

Biomaterials and their surfaces regulate the biological response and ultimately the quality of healing at a possible site of implantation. The physical, chemical and topographical properties of implants' surfaces play a decisive role in the biological integration process for their immediate loading and long-term success. Since at this level of biological interaction nano-dimensionality is basically entailed, bio-functional nanostructured composites either as filling/cement or coating to metallic implants are required. This study shows the possibility of synthesizing two phases of nanostructured titanium phosphate (π and ρ polymorphs) and enriching them with silver nanoparticles and strontium. More importantly, Ag-Sr-enriched nanostructured π­titanium phosphate is induced to grow on a commercially available titanium alloy (Ti-6Al-4V), widely used in orthopedic and dental implants, under highly controlled conditions. Structural and microscopic studies, using XRD, HRTEM and SEM altogether confirm the resultant phases and their enrichment with strontium and silver nanoparticles with an average particle size around 6 nm. Using confocal laser scanning microscopy, the surface roughness was measured and is found to lay at the interface between the nanosized and microsized topologies. Ion release assessments showed that the presence of strontium controlled the release rate of silver ions and this could be beneficial in terms of decreasing the accompanied cytotoxicity that is usually encountered at high concentrations of silver release. Antimicrobial and cell proliferation assays have proved that enriching titanium phosphate with strontium and silver nanoparticles has improved their antimicrobial properties, while the cytotoxicity could be controlled.


Subject(s)
Metal Nanoparticles , Nanofibers , Alloys/pharmacology , Silver/pharmacology , Surface Properties , Titanium/pharmacology
7.
Dalton Trans ; 50(22): 7667-7677, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33977991

ABSTRACT

Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) has been known for decades, its crystal structure has remained unsolved. Herewith, we report the crystal structure of π-TiP at room temperature, as determined from synchrotron radiation powder X-ray diffraction, and corroborated by 31P solid state NMR and accurate density functional theory calculations. In contrast to the previously reported ρ-TiP polymorph, the as-synthesized hydrated phase crystallizes in the monoclinic system (P21/c, a = 5.1121(2) Å, b = 14.4921(9) Å, c = 12.0450(11), ß = 115.31(1)°, Z = 4), and is composed of corner-sharing titanium octahedra and phosphate units arranged in a pattern that is unique to the ρ-TiP polymorph. The unit cell was confirmed by electron diffraction, while the formation of planar packing imperfections and stacking faults along the [101] plane was revealed by HRTEM analysis. An in situ dehydration study of π-TiP, monitored by high-temperature powder X-ray diffraction, led to a new anhydrous monoclinic (P21/c, a = 5.1187(13) Å, b = 11.0600(21) Å, c = 14.4556(26), ß = 107.65(2)°, Z = 4) phase that crystallizes at 500 °C. The latter resembles the packing fashion of the parental π-TiP, albeit titanium atoms are present in both distorted tetrahedral and octahedral coordination environments. Anhydrous π-TiP was found to partially rehydrate at room temperature, reversibly adopting the structure of the initial phase. The studies carried out under different conditions of leaching and impregnation with H3PO4 showed that π-TiP exhibits an extrinsic proton conductivity (1.3 × 10-3 S cm-1 at 90 °C and 95% RH) due to the presence of the protonated phosphate species bound on the particles surface, as revealed by 31P MAS-NMR spectroscopy data. The composite membranes of Chitosan (CS) matrices filled with H3PO4-impregnated π-TiP solid show an increment of proton conductivity up to 4.5 × 10-3 S cm-1, at 80 °C and 95% RH, which is 1.8-fold higher than those of the bare CS membranes.

8.
Materials (Basel) ; 14(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803515

ABSTRACT

There is an increasing demand on synthesizing pharmaceuticals and biomaterials that possess antimicrobial and/or antiviral activities. In this respective silver nanoparticles are known for their excellent antimicrobial activity. Nevertheless, their uncontrolled release in a biological medium can induce a cytotoxic effect. For this, we explored the use of nanolayered metal phosphates based on titanium and zirconium as materials that can be enriched with silver nanoparticles. Employing the hydrothermal route, crystalline α-phases of zirconium and titanium phosphates (α-ZrP, α-TiP) were synthesized and there after surface-enriched with silver nanoparticles. The structural assessment confirmed the stability of the structures and their sizes are in the nanoscale at least in one dimension. The cytocompatibility assays confirmed the biocompatibility of the pristine phases and the antimicrobial assay confirmed that both silver-enriched nanolayered structures maintain an antibacterial effect at reasonably low concentrations.

9.
ACS Appl Mater Interfaces ; 11(40): 36991-37003, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31516002

ABSTRACT

The production of MoS2 nanosheets by electrochemical exfoliation routes holds great promise as a means to access this two-dimensional material in large quantities for different practical applications. However, the use of electrolytes based on synthetic organic salts and solvents, as well as issues related to the unwanted oxidation and/or phase transformation of the exfoliated nanosheets, constitute significant obstacles that hinder the industrial adoption of the electrochemical approach. Here, we introduce a safe and sustainable method for the cathodic delamination of MoS2 that makes use of aqueous solutions of very simple and widely available salts, mainly KCl, as the electrolyte. Combined with an appropriate biomolecule-based solvent transfer protocol, such an electrolytic exfoliation route is shown to afford colloidally dispersed, oxide-free, and phase-preserved MoS2 nanosheets of high structural quality in considerable yields. The mechanisms behind the efficient aqueous delamination of the bulk MoS2 cathode are also discussed and rationalized on the basis of the penetration of hydrated cations from the electrolyte between its layers and the immediate reduction of the accompanying water molecules. An asymmetric supercapacitor assembled with a cathodic MoS2 nanosheet-single walled carbon nanotube hybrid as the positive electrode and activated carbon as the negative electrode delivered energy densities (e.g., 26 W h kg-1 at 750 W kg-1 in 6 M KOH) that were competitive with those of other MoS2-based asymmetric devices. When used as a catalyst for the reduction of nitroarenes, the present cathodically exfoliated nanosheets exhibited one of the highest activities reported so far with MoS2 nanostructures, the origin of which is accounted for as well. Overall, by facilitating access to this two-dimensional material through a particularly simple, efficient, and cost-effective technique, these results should expedite the practical implementation of MoS2 nanosheets in energy storage, catalysis, and beyond.

10.
PLoS One ; 13(4): e0195011, 2018.
Article in English | MEDLINE | ID: mdl-29694407

ABSTRACT

Malaria remains a major threat to human health, as strains resistant to current therapeutics are discovered. Efforts in finding new drug targets are hampered by the lack of sufficiently specific tools to provide target validation prior to initiating expensive drug discovery projects. Thus, new approaches that can rapidly enable drug target validation are of significant interest. In this manuscript we present the crystal structure of malate dehydrogenase from Plasmodium falciparum (PfMDH) at 2.4 Å resolution and structure-based mutagenic experiments interfering with the inter-oligomeric interactions of the enzyme. We report decreased thermal stability, significantly decreased specific activity and kinetic parameters of PfMDH mutants upon mutagenic disruption of either oligomeric interface. In contrast, stabilization of one of the interfaces resulted in increased thermal stability, increased substrate/cofactor affinity and hyperactivity of the enzyme towards malate production at sub-millimolar substrate concentrations. Furthermore, the presented data show that our designed PfMDH mutant could be used as specific inhibitor of the wild type PfMDH activity, as mutated PfMDH copies were shown to be able to self-incorporate into the native assembly upon introduction in vitro, yielding deactivated mutant:wild-type species. These data provide an insight into the role of oligomeric assembly in regulation of PfMDH activity and reveal that recombinant mutants could be used as probe tool for specific modification of the wild type PfMDH activity, thus offering the potential to validate its druggability in vivo without recourse to complex genetics or initial tool compounds. Such tool compounds often lack specificity between host or pathogen proteins (or are toxic in in vivo trials) and result in difficulties in assessing cause and effect-particularly in cases when the enzymes of interest possess close homologs within the human host. Furthermore, our oligomeric interference approach could be used in the future in order to assess druggability of other challenging human pathogen drug targets.


Subject(s)
Antimalarials/chemistry , Drug Discovery , Malate Dehydrogenase/chemistry , Plasmodium falciparum/enzymology , Amino Acid Sequence , Antimalarials/pharmacology , Binding Sites , Conserved Sequence , Gene Expression , Humans , Malate Dehydrogenase/antagonists & inhibitors , Malate Dehydrogenase/genetics , Models, Molecular , Molecular Conformation , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protein Binding , Recombinant Proteins , Substrate Specificity
11.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 2): 76-81, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29400315

ABSTRACT

Peroxisomes are a major cellular compartment of eukaryotic cells, and are involved in a variety of metabolic functions and pathways according to species, cell type and environmental conditions. Their biogenesis relies on conserved genes known as PEX genes that encode peroxin proteins. Peroxisomal membrane proteins and peroxisomal matrix proteins are generated in the cytosol and are subsequently imported into the peroxisome post-translationally. Matrix proteins containing a peroxisomal targeting signal type 1 (PTS1) are recognized by the cycling receptor Pex5p and transported to the peroxisomal lumen. Pex5p docking, release of the cargo into the lumen and recycling involve a number of peroxins, but a key player is the Pex4p-Pex22p complex described in this manuscript. Pex4p from the yeast Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme that is anchored on the cytosolic side of the peroxisomal membrane through its binding partner Pex22p, which acts as both a docking site and a co-activator of Pex4p. As Pex5p undergoes recycling and release, the Pex4p-Pex22p complex is essential for monoubiquitination at the conserved cysteine residue of Pex5p. The absence of Pex4p-Pex22p inhibits Pex5p recycling and hence PTS1 protein import. This article reports the crystallization of Pex4p and of the Pex4p-Pex22p complex from the yeast Hansenula polymorpha, and data collection from their crystals to 2.0 and 2.85 Šresolution, respectively. The resulting structures are likely to provide important insights to understand the molecular mechanism of the Pex4p-Pex22p complex and its role in peroxisome biogenesis.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Peroxins/chemistry , Peroxins/metabolism , Pichia , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Crystallization/methods , Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Peroxins/genetics , Pichia/genetics , Protein Binding/physiology , Saccharomyces cerevisiae Proteins/genetics , X-Ray Diffraction/methods
12.
Sci Rep ; 7(1): 9355, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839267

ABSTRACT

Refolding of proteins derived from inclusion bodies is very promising as it can provide a reliable source of target proteins of high purity. However, inclusion body-based protein production is often limited by the lack of techniques for the detection of correctly refolded protein. Thus, the selection of the refolding conditions is mostly achieved using trial and error approaches and is thus a time-consuming process. In this study, we use the latest developments in the differential scanning fluorimetry guided refolding approach as an analytical method to detect correctly refolded protein. We describe a systematic buffer screen that contains a 96-well primary pH-refolding screen in conjunction with a secondary additive screen. Our research demonstrates that this approach could be applied for determining refolding conditions for several proteins. In addition, it revealed which "helper" molecules, such as arginine and additives are essential. Four different proteins: HA-RBD, MDM2, IL-17A and PD-L1 were used to validate our refolding approach. Our systematic protocol evaluates the impact of the "helper" molecules, the pH, buffer system and time on the protein refolding process in a high-throughput fashion. Finally, we demonstrate that refolding time and a secondary thermal shift assay buffer screen are critical factors for improving refolding efficiency.


Subject(s)
Protein Refolding , Proteins/chemistry , Buffers , Chromatography, Gel , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Interaction Domains and Motifs , Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Solubility
13.
Small ; 13(28)2017 07.
Article in English | MEDLINE | ID: mdl-28558135

ABSTRACT

The possibility of using sub-micrometer polymeric stomatocytes is investigated to effectuate confined crystallization of inorganic compounds. These bowl-shaped polymeric compartments facilitate confined crystallization while their glassy surfaces provide their crystalline cargos with convenient shielding from the electron beam's harsh effects during transmission electron microscopy experiments. Stomatocytes host the growth of a single nanocrystal per nanocavity, and the electron diffraction experiments reveal that their glassy membranes do not interfere with the diffraction patterns obtained from their crystalline cargos. Therefore, it is expected that the encapsulation and crystallization within these compartments can be considered as a promising template (nanovials) that hold and protect nanocrystals and protein clusters from the direct radiation damage before data acquisition, while they are examined by modern crystallography methodologies such as serial femtosecond crystallography.

15.
ACS Appl Mater Interfaces ; 7(16): 8495-505, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25822583

ABSTRACT

Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture.


Subject(s)
Collagen/chemistry , Freezing , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Acetic Acid/pharmacology , Animals , Cattle , Detergents/pharmacology , Microscopy, Electron, Scanning , Polyvinyl Alcohol/chemistry , Porosity
16.
Mater Sci Eng C Mater Biol Appl ; 33(3): 1813-8, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23827641

ABSTRACT

The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6h of the whole soaking process.


Subject(s)
Alloys/pharmacology , Biomimetic Materials/pharmacology , Biomimetics/methods , Coated Materials, Biocompatible/pharmacology , Prostheses and Implants , Body Fluids/drug effects , Iron/pharmacology , Microscopy, Electron, Scanning , Solutions , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...