Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Cogn Res Princ Implic ; 9(1): 28, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713308

ABSTRACT

Fake news can have enduring effects on memory and beliefs. An ongoing theoretical debate has investigated whether corrections (fact-checks) should include reminders of fake news. The familiarity backfire account proposes that reminders hinder correction (increasing interference), whereas integration-based accounts argue that reminders facilitate correction (promoting memory integration). In three experiments, we examined how different types of corrections influenced memory for and belief in news headlines. In the exposure phase, participants viewed real and fake news headlines. In the correction phase, participants viewed reminders of fake news that either reiterated the false details (complete) or prompted recall of missing false details (partial); reminders were followed by fact-checked headlines correcting the false details. Both reminder types led to proactive interference in memory for corrected details, but complete reminders produced less interference than partial reminders (Experiment 1). However, when participants had fewer initial exposures to fake news and experienced a delay between exposure and correction, this effect was reversed; partial reminders led to proactive facilitation, enhancing correction (Experiment 2). This effect occurred regardless of the delay before correction (Experiment 3), suggesting that the effects of partial reminders depend on the number of prior fake news exposures. In all experiments, memory and perceived accuracy were better when fake news and corrections were recollected, implicating a critical role for integrative encoding. Overall, we show that when memories of fake news are weak or less accessible, partial reminders are more effective for correction; when memories of fake news are stronger or more accessible, complete reminders are preferable.


Subject(s)
Deception , Mental Recall , Humans , Adult , Young Adult , Female , Male , Mental Recall/physiology
2.
PLoS One ; 18(10): e0290708, 2023.
Article in English | MEDLINE | ID: mdl-37796971

ABSTRACT

During the COVID-19 pandemic, individuals depended on risk information to make decisions about everyday behaviors and public policy. Here, we assessed whether an interactive website influenced individuals' risk tolerance to support public health goals. We collected data from 11,169 unique users who engaged with the online COVID-19 Event Risk Tool (https://covid19risk.biosci.gatech.edu/) between 9/22/21 and 1/22/22. The website featured interactive elements, including a dynamic risk map, survey questions, and a risk quiz with accuracy feedback. After learning about the risk of COVID-19 exposure, participants reported being less willing to participate in events that could spread COVID-19, especially for high-risk large events. We also uncovered a bias in risk estimation: Participants tended to overestimate the risk of small events but underestimate the risk of large events. Importantly, even participants who voluntarily sought information about COVID risks tended to misestimate exposure risk, demonstrating the need for intervention. Participants from liberal-leaning counties were more likely to use the website tools and more responsive to feedback about risk misestimation, indicating that political partisanship influences how individuals seek and engage with COVID-19 information. Lastly, we explored temporal dynamics and found that user engagement and risk estimation fluctuated over the course of the Omicron variant outbreak. Overall, we report an effective large-scale method for communicating viral exposure risk; our findings are relevant to broader research on risk communication, epidemiological modeling, and risky decision-making.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Communication
3.
Proc Natl Acad Sci U S A ; 120(43): e2301974120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37844235

ABSTRACT

When people feel curious, they often seek information to resolve their curiosity. Reaching resolution, however, does not always occur in a single step but instead may follow the accumulation of information over time. Here, we investigated changes in curiosity over a dynamic information-gathering process and how these changes related to affective and cognitive states as well as behavior. Human participants performed an Evolving Line Drawing Task, during which they reported guesses about the drawings' identities and made choices about whether to keep watching. In Study 1, the timing of choices was predetermined and externally imposed, while in Study 2, participants had agency in the timing of guesses and choices. Using this dynamic paradigm, we found that even within a single information-gathering episode, curiosity evolved in concert with other emotional states and with confidence. In both studies, we showed that the relationship between curiosity and confidence depended on stimulus entropy (unique guesses across participants) and on guess accuracy. We demonstrated that curiosity is multifaceted and can be experienced as either positive or negative depending on the state of information gathering. Critically, even when given the choice to alleviate uncertainty immediately (i.e., view a spoiler), higher curiosity promoted continuing to engage in the information-gathering process. Collectively, we show that curiosity changes over information accumulation to drive engagement with external stimuli, rather than to shortcut the path to resolution, highlighting the value inherent in the process of discovery.


Subject(s)
Emotions , Exploratory Behavior , Humans , Uncertainty , Cognition , Time
4.
Psychon Bull Rev ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698807

ABSTRACT

Our daily experiences unfold continuously, but we remember them as a series of discrete events through a process called event segmentation. Prominent theories of event segmentation suggest that event boundaries in memory are triggered by significant shifts in the external environment, such as a change in one's physical surroundings. In this review, we argue for a fundamental extension of this research field to also encompass internal state changes as playing a key role in structuring event memory. Accordingly, we propose an expanded taxonomy of event boundary-triggering processes, and review behavioral and neuroscience research on internal state changes in three core domains: affective states, goal states, and motivational states. Finally, we evaluate how well current theoretical frameworks can accommodate the unique and interactive contributions of internal states to event memory. We conclude that a theoretical perspective on event memory that integrates both external environment and internal state changes allows for a more complete understanding of how the brain structures experiences, with important implications for future research in cognitive and clinical neuroscience.

5.
Proc Natl Acad Sci U S A ; 120(31): e2304881120, 2023 08.
Article in English | MEDLINE | ID: mdl-37490530

ABSTRACT

Motivation influences goals, decisions, and memory formation. Imperative motivation links urgent goals to actions, narrowing the focus of attention and memory. Conversely, interrogative motivation integrates goals over time and space, supporting rich memory encoding for flexible future use. We manipulated motivational states via cover stories for a reinforcement learning task: The imperative group imagined executing a museum heist, whereas the interrogative group imagined planning a future heist. Participants repeatedly chose among four doors, representing different museum rooms, to sample trial-unique paintings with variable rewards (later converted to bonus payments). The next day, participants performed a surprise memory test. Crucially, only the cover stories differed between the imperative and interrogative groups; the reinforcement learning task was identical, and all participants had the same expectations about how and when bonus payments would be awarded. In an initial sample and a preregistered replication, we demonstrated that imperative motivation increased exploitation during reinforcement learning. Conversely, interrogative motivation increased directed (but not random) exploration, despite the cost to participants' earnings. At test, the interrogative group was more accurate at recognizing paintings and recalling associated values. In the interrogative group, higher value paintings were more likely to be remembered; imperative motivation disrupted this effect of reward modulating memory. Overall, we demonstrate that a prelearning motivational manipulation can bias learning and memory, bearing implications for education, behavior change, clinical interventions, and communication.


Subject(s)
Motivation , Reinforcement, Psychology , Humans , Learning , Reward , Mental Recall
6.
Nat Commun ; 13(1): 6729, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344524

ABSTRACT

The hippocampus has been a focus of memory research since H.M's surgery abolished his ability to form new memories, yet its mechanistic role in memory remains debated. Here, we identify a candidate memory mechanism: an anticipatory hippocampal "convergence state", observed while awaiting valuable information, and which predicts subsequent learning. During fMRI, participants viewed trivia questions eliciting high or low curiosity, followed seconds later by its answer. We reasoned that encoding success requires a confluence of conditions, so that hippocampal states more conducive to memory formation should converge in state space. To operationalize convergence of neural states, we quantified the typicality of multivoxel patterns in the medial temporal lobes during anticipation and encoding of trivia answers. We found that the typicality of anticipatory hippocampal patterns increased during high curiosity. Crucially, anticipatory hippocampal pattern typicality increased with dopaminergic midbrain activation and uniquely accounted for the association between midbrain activation and subsequent recall. We propose that hippocampal convergence states may complete a cascade from motivation and midbrain activation to memory enhancement, and may be a general predictor of memory formation.


Subject(s)
Hippocampus , Mesencephalon , Humans , Hippocampus/physiology , Mesencephalon/physiology , Learning/physiology , Temporal Lobe/physiology , Mental Recall , Magnetic Resonance Imaging
7.
J Exp Psychol Gen ; 151(2): 390-409, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35286121

ABSTRACT

Flashbulb memories represent a unique phenomenon linking research on cognition with research on emotion, yet most studies on this phenomenon have characterized collective events that are negative and unexpected in nature. In contrast, the 2016 American election of Donald Trump was a public, culturally shared event, eliciting extreme emotional responses that were positive for some individuals but negative for others, as well as varying levels of surprise. We longitudinally evaluated autobiographical memories for Election Night 2016 in a large online sample of Clinton supporters, Trump supporters, and third-party/nonvoters over a 12-month period, in terms of both objective memory metrics (information quantity and memory consistency) and subjective memory metrics (including memory confidence, metacognition, and sensory experience). Emotional responses to the election outcome varied widely, with Clinton supporters reporting highly negative responses, Trump supporters reporting highly positive responses, and third-party/nonvoters reporting mildly negative responses. Emotional intensity was enhanced in surprised versus nonsurprised individuals. Relative to third-party/nonvoters, Clinton and Trump supporters reported greater memory vividness, event importance, and sensory experience. Additionally, limited valence effects on subjective memory were observed (including higher memory confidence in Trump supporters and higher memory rehearsal in Clinton supporters). These differences in subjective experience were observed despite similar levels of information quantity and consistency as a function of valence. This characterization of memories for surprising positive events suggests they share many of the paradoxical qualities of memories for negative events often discussed as "flashbulb memories" but also points to potential differences in memory phenomenology for personal versus collectively experienced events. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
Memory, Episodic , Benchmarking , Emotions/physiology , Humans , Mental Recall/physiology , Politics , United States
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911768

ABSTRACT

The brain supports adaptive behavior by generating predictions, learning from errors, and updating memories to incorporate new information. Prediction error, or surprise, triggers learning when reality contradicts expectations. Prior studies have shown that the hippocampus signals prediction errors, but the hypothesized link to memory updating has not been demonstrated. In a human functional MRI study, we elicited mnemonic prediction errors by interrupting familiar narrative videos immediately before the expected endings. We found that prediction errors reversed the relationship between univariate hippocampal activation and memory: greater hippocampal activation predicted memory preservation after expected endings, but memory updating after surprising endings. In contrast to previous studies, we show that univariate activation was insufficient for understanding hippocampal prediction error signals. We explain this surprising finding by tracking both the evolution of hippocampal activation patterns and the connectivity between the hippocampus and neuromodulatory regions. We found that hippocampal activation patterns stabilized as each narrative episode unfolded, suggesting sustained episodic representations. Prediction errors disrupted these sustained representations and the degree of disruption predicted memory updating. The relationship between hippocampal activation and subsequent memory depended on concurrent basal forebrain activation, supporting the idea that cholinergic modulation regulates attention and memory. We conclude that prediction errors create conditions that favor memory updating, prompting the hippocampus to abandon ongoing predictions and make memories malleable.


Subject(s)
Hippocampus/physiology , Memory, Episodic , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Mental Recall/physiology , Middle Aged , Nerve Net , Prosencephalon/physiology , Young Adult
9.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34341120

ABSTRACT

The COVID-19 pandemic reached staggering new peaks during a global resurgence more than a year after the crisis began. Although public health guidelines initially helped to slow the spread of disease, widespread pandemic fatigue and prolonged harm to financial stability and mental well-being contributed to this resurgence. In the late stage of the pandemic, it became clear that new interventions were needed to support long-term behavior change. Here, we examined subjective perceived risk about COVID-19 and the relationship between perceived risk and engagement in risky behaviors. In study 1 (n = 303), we found that subjective perceived risk was likely inaccurate but predicted compliance with public health guidelines. In study 2 (n = 735), we developed a multifaceted intervention designed to realign perceived risk with actual risk. Participants completed an episodic simulation task; we expected that imagining a COVID-related scenario would increase the salience of risk information and enhance behavior change. Immediately following the episodic simulation, participants completed a risk estimation task with individualized feedback about local viral prevalence. We found that information prediction error, a measure of surprise, drove beneficial change in perceived risk and willingness to engage in risky activities. Imagining a COVID-related scenario beforehand enhanced the effect of prediction error on learning. Importantly, our intervention produced lasting effects that persisted after a 1- to 3-wk delay. Overall, we describe a fast and feasible online intervention that effectively changed beliefs and intentions about risky behaviors.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Pandemics/prevention & control , Risk-Taking , Adult , COVID-19/virology , Humans , Male , Mental Health , Perception/physiology , Public Health , SARS-CoV-2/pathogenicity , Surveys and Questionnaires , Young Adult
10.
Neuroimage ; 237: 118207, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34048901

ABSTRACT

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Subject(s)
Functional Neuroimaging , Machine Learning , Magnetic Resonance Imaging , Neurofeedback , Adult , Humans
11.
Nat Aging ; 1(8): 677-683, 2021 08.
Article in English | MEDLINE | ID: mdl-35990532

ABSTRACT

The COVID-19 pandemic has created a serious and prolonged public-health emergency. Older adults have been at substantially greater risk of hospitalization, ICU admission, and death due to COVID-19; as of February 2021, over 81% of COVID-19-related deaths in the U.S. occurred for people over the age of 651,2. Converging evidence from around the world suggests that age is the greatest risk factor for severe COVID-19 illness and for the experience of adverse health outcomes3,4. Therefore, effectively communicating health-related risk information requires tailoring interventions to older adults' needs5. Using a novel informational intervention with a nationally-representative sample of 546 U.S. residents, we found that older adults reported increased perceived risk of COVID-19 transmission after imagining a personalized scenario with social consequences. Although older adults tended to forget numerical information over time, the personalized simulations elicited increases in perceived risk that persisted over a 1-3 week delay. Overall, our results bear broad implications for communicating information about health risks to older adults, and they suggest new strategies to combat annual influenza outbreaks.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , Pandemics , Risk Factors
12.
Front Neurosci ; 14: 900, 2020.
Article in English | MEDLINE | ID: mdl-33041750

ABSTRACT

Increasingly, neuroimaging researchers are exploring the use of real-time functional magnetic resonance imaging (rt-fMRI) as a way to access a participant's ongoing brain function throughout a scan. This approach presents novel and exciting experimental applications ranging from monitoring data quality in real time, to delivering neurofeedback from a region of interest, to dynamically controlling experimental flow, or interfacing with remote devices. Yet, for those interested in adopting this method, the existing software options are few and limited in application. This presents a barrier for new users, as well as hinders existing users from refining techniques and methods. Here we introduce a free, open-source rt-fMRI package, the Pyneal toolkit, designed to address this limitation. The Pyneal toolkit is python-based software that offers a flexible and user friendly framework for rt-fMRI, is compatible with all three major scanner manufacturers (GE, Siemens, Phillips), and, critically, allows fully customized analysis pipelines. In this article, we provide a detailed overview of the architecture, describe how to set up and run the Pyneal toolkit during an experimental session, offer tutorials with scan data that demonstrate how data flows through the Pyneal toolkit with example analyses, and highlight the advantages that the Pyneal toolkit offers to the neuroimaging community.

13.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32729652

ABSTRACT

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging , Neurofeedback/physiology , Practice, Psychological , Adult , Humans , Prognosis
14.
Nature ; 582(7810): 84-88, 2020 06.
Article in English | MEDLINE | ID: mdl-32483374

ABSTRACT

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.


Subject(s)
Data Analysis , Data Science/methods , Data Science/standards , Datasets as Topic , Functional Neuroimaging , Magnetic Resonance Imaging , Research Personnel/organization & administration , Brain/diagnostic imaging , Brain/physiology , Datasets as Topic/statistics & numerical data , Female , Humans , Logistic Models , Male , Meta-Analysis as Topic , Models, Neurological , Reproducibility of Results , Research Personnel/standards , Software
16.
J Cogn Neurosci ; 31(10): 1443-1454, 2019 10.
Article in English | MEDLINE | ID: mdl-30990388

ABSTRACT

Anticipating rewards has been shown to enhance memory formation. Although substantial evidence implicates dopamine in this behavioral effect, the precise mechanisms remain ambiguous. Because dopamine nuclei have been associated with two distinct physiological signatures of reward prediction, we hypothesized two dissociable effects on memory formation. These two signatures are a phasic dopamine response immediately following a reward cue that encodes its expected value and a sustained, ramping response that has been demonstrated during high reward uncertainty [Fiorillo, C. D., Tobler, P. N., & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898-1902, 2003]. Here, we show in humans that the impact of reward anticipation on memory for an event depends on its timing relative to these physiological signatures. By manipulating reward probability (100%, 50%, or 0%) and the timing of the event to be encoded (just after the reward cue versus just before expected reward outcome), we demonstrated the predicted double dissociation: Early during reward anticipation, memory formation was improved by increased expected reward value, whereas late during reward anticipation, memory formation was enhanced by reward uncertainty. Notably, although the memory benefits of high expected reward in the early interval were consolidation dependent, the memory benefits of high uncertainty in the later interval were not. These findings support the view that expected reward benefits memory consolidation via phasic dopamine release. The novel finding of a distinct memory enhancement, temporally consistent with sustained anticipatory dopamine release, points toward new mechanisms of memory modulation by reward now ripe for further investigation.


Subject(s)
Anticipation, Psychological/physiology , Memory Consolidation/physiology , Recognition, Psychology/physiology , Reward , Uncertainty , Adult , Cues , Female , Humans , Male , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Time Factors , Young Adult
17.
PLoS One ; 14(1): e0211279, 2019.
Article in English | MEDLINE | ID: mdl-30682141

ABSTRACT

Whereas previous research has focused on the role of the rTPJ when consciously inhibiting mimicry, we test the role of the rTPJ on mimicry within a social interaction, during which mimicking occurs nonconsciously. We wanted to determine whether higher rTPJ activation always inhibits the tendency to imitate (regardless of the context) or whether it facilitates mimicry during social interactions (when mimicking is an adaptive response). Participants received either active or sham intermittent theta-burst stimulation (iTBS: a type of stimulation that increases cortical activation) to the rTPJ. Next, we measured how much participants mimicked the hair and face touching of another person. Participants in the active stimulation condition engaged in significantly less mimicry than those in the sham stimulation condition. This finding suggests that even in a context in which mimicking is adaptive, rTPJ inhibits mimicry rather than facilitating it, supporting the hypothesis that rTPJ enhances representations of self over other regardless of the goals within a given context.


Subject(s)
Parietal Lobe/physiology , Temporal Lobe/physiology , Touch/physiology , Adult , Female , Humans , Interpersonal Relations , Male , Transcranial Magnetic Stimulation , Young Adult
18.
Neuroimage Clin ; 19: 868-875, 2018.
Article in English | MEDLINE | ID: mdl-29922575

ABSTRACT

To benefit from cognitive behavioral therapy (CBT), individuals must not only learn new skills but also strategically implement them outside of session. Here, we tested a novel technique for personalizing CBT skills and facilitating their generalization to daily life. We hypothesized that showing participants the impact of specific CBT strategies on their own brain function using real-time functional magnetic imaging (rt-fMRI) neurofeedback would increase their metacognitive awareness, help them identify effective strategies, and motivate real-world use. In a within-subjects design, participants who had completed a clinical trial of a standardized course of CBT created a personal repertoire of negative autobiographical stimuli and mood regulation strategies. From each participant's repertoire, a set of experimental and control strategies were identified; only experimental strategies were practiced in the scanner. During the rt-fMRI neurofeedback session, participants used negative stimuli and strategies from their repertoire to manipulate activation in the anterior cingulate cortex, a region implicated in emotional distress. The primary outcome measures were changes in participant ratings of strategy difficulty, efficacy, and frequency of use. As predicted, ratings for unscanned control strategies were stable across observations, whereas ratings for experimental strategies changed after neurofeedback. At follow-up one month after the session, efficacy and frequency ratings for scanned strategies were predicted by neurofeedback during the rt-fMRI session. These results suggest that rt-fMRI neurofeedback created a salient and durable learning experience for patients, extending beyond the scan session to guide and motivate CBT skill use weeks later. This metacognitive approach to neurofeedback offers a promising model for increasing clinical benefits from cognitive behavioral therapy by personalizing skills and facilitating generalization.


Subject(s)
Brain/diagnostic imaging , Cognitive Behavioral Therapy/methods , Depressive Disorder/diagnostic imaging , Depressive Disorder/therapy , Neurofeedback/methods , Adult , Brain/physiopathology , Depressive Disorder/physiopathology , Depressive Disorder/psychology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Treatment Outcome
19.
PLoS One ; 13(3): e0193506, 2018.
Article in English | MEDLINE | ID: mdl-29558526

ABSTRACT

Volitional exploration and learning are key to adaptive behavior, yet their characterization remains a complex problem for cognitive science. Exploration has been posited as a mechanism by which motivation promotes memory, but this relationship is not well-understood, in part because novel stimuli that motivate exploration also reliably elicit changes in neuromodulatory brain systems that directly alter memory formation, via effects on neural plasticity. To deconfound interrelationships between motivation, exploration, and memory formation we manipulated motivational state prior to entering a spatial context, measured exploratory responses to the context and novel stimuli within it, and then examined motivation and exploration as predictors of memory outcomes. To elicit spontaneous exploration, we used the physical space of an art exhibit with affectively rich content; we expected motivated exploration and memory to reflect multiple factors, including not only motivational valence, but also individual differences. Motivation was manipulated via an introductory statement framing exhibit themes in terms of Promotion- or Prevention-oriented goals. Participants explored the exhibit while being tracked by video. They returned 24 hours later for recall and spatial memory tests, followed by measures of motivation, personality, and relevant attitude variables. Promotion and Prevention condition participants did not differ in terms of group-level exploration time or memory metrics, suggesting similar motivation to explore under both framing contexts. However, exploratory behavior and memory outcomes were significantly more closely related under Promotion than Prevention, indicating that Prevention framing disrupted expected depth-of-encoding effects. Additionally, while trait measures predicted exploration similarly across framing conditions, traits interacted with motivational framing context and facial affect to predict memory outcomes. This novel characterization of motivated learning implies that dissociable behavioral and biological mechanisms, here varying as a function of valence, contribute to memory outcomes in complex, real-life environments.


Subject(s)
Exploratory Behavior/physiology , Memory , Spatial Behavior/physiology , Adolescent , Adult , Aged , Face , Female , Humans , Male , Mental Recall/physiology , Middle Aged , Young Adult
20.
J Aging Res ; 2018: 4930385, 2018.
Article in English | MEDLINE | ID: mdl-30652033

ABSTRACT

Despite increased rates of disease, disability, and social losses with aging, seniors consistently report higher levels of subjective well-being (SWB), a construct closely related to happiness, than younger adults. In this exploratory study, we utilized an available dataset to investigate how aspects of health commonly deteriorating with age, including sensory (i.e., vision and hearing) and cognitive status, relate to variability in self-described contributors to happiness. Community-dwelling seniors (n = 114) responded to a single-item prompt: "name things that make people happy." 1731 responses were categorized into 13 domains of SWB via structured content analysis. Sensory health and cognition were assessed by Snellen visual acuity, pure-tone audiometry, and in-person administration of the Brief Test of Adult Cognition by Telephone (BTACT) battery. A subset of eligible participants (n = 57) underwent functional magnetic resonance imaging (fMRI) to assess resting state functional connectivity (FC) within a previously described dopaminergic network associated with reward processing. SWB response patterns were relatively stable across gender, sensory status, and cognitive performance with few exceptions. For example, hearing-impaired participants listed fewer determinants of SWB (13.59 vs. 17.16; p < 0.001) and were less likely to name things in the "special events" category. Participants with a higher proportion of responses in the "accomplishments" domain (e.g., winning, getting good grades) demonstrated increased FC between the ventral tegmental area and nucleus accumbens, regions implicated in reward and motivated behavior. While the framework for determinants of happiness among seniors was largely stable across the factors assessed here, our findings suggest that subtle changes in this construct may be linked to sensory loss. The possibility that perceptions about determinants of happiness might relate to differences in intrinsic connectivity within reward-related brain networks also warrants further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL