Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Immun Inflamm Dis ; 9(3): 984-990, 2021 09.
Article in English | MEDLINE | ID: mdl-34034363

ABSTRACT

INTRODUCTION: Alpha-gal syndrome (AGS) is characterized by delayed hypersensitivity to non-primate mammalian meat in people having specific immunoglobulin E (sIgE) to the oligosaccharide galactose-alpha-1,3-galactose. AGS has been linked to tick bites from Amblyomma americanum (Aa) in the U.S. A small animal model of meat allergy is needed to study the mechanism of alpha-gal sensitization, the effector phase leading to delayed allergic responses and potential therapeutics to treat AGS. METHODS: Eight- to ten-weeks old mice with a targeted inactivation of alpha-1,3-galactosyltransferase (AGKO) were injected intradermally with 50 µg of Aa tick salivary gland extract (TSGE) on days 0, 7, 21, 28, 42, and 49. Total IgE and alpha-gal sIgE were quantitated on Day 56 by enzyme-linked immunosorbent assay. Mice were challenged orally with 400 mg of cooked pork kidney homogenate or pork fat. Reaction severity was assessed by measuring a drop in core body temperature and scoring allergic signs. RESULTS: Compared to control animals, mice treated with TSGE had 190-fold higher total IgE on Day 56 (0.60 ± 0.12 ng/ml vs. 113.2 ± 24.77 ng/ml; p < 0.001). Alpha-gal sIgE was also produced in AGKO mice following TSGE sensitization (undetected vs. 158.4 ± 72.43 pg/ml). Further, sensitized mice displayed moderate clinical allergic signs along with a drop in core body temperature of ≥2°C as an objective measure of a systemic allergic reaction. Interestingly, female mice had higher total IgE responses to TSGE treatment but male mice had larger declines in mean body temperature. CONCLUSION: TSGE-sensitized AGKO mice generate sIgE to alpha-gal and demonstrate characteristic allergic responses to pork fat and pork kidney. In keeping with the AGS responses documented in humans, mice reacted more rapidly to organ meat than to high fat pork challenge. This mouse model establishes the central role of tick bites in the development of AGS and provides a small animal model to mechanistically study mammalian meat allergy.


Subject(s)
Food Hypersensitivity , Ticks , Animals , Female , Male , Mice , Plant Extracts , Salivary Glands
2.
Int J Mol Sci ; 22(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804792

ABSTRACT

The mechanisms of pathogenesis driving alpha-gal syndrome (AGS) are not fully understood. Differences in immune gene expression between AGS individuals and non-allergic controls may illuminate molecular pathways and targets critical for AGS development. We performed immune expression profiling with RNA from the peripheral blood mononuclear cells (PBMCs) of seven controls, 15 AGS participants, and two participants sensitized but not allergic to alpha-gal using the NanoString nCounter PanCancer immune profiling panel, which includes 770 genes from 14 different cell types. The top differentially expressed genes (DEG) between AGS subjects and controls included transcription factors regulating immune gene expression, such as the NFκB pathway (NFKBIA, NFKB2, REL), antigen presentation molecules, type 2/allergic immune responses, itch, and allergic dermatitis. The differential expression of genes linked to T and B cell function was also identified, including transcription factor BCL-6, markers of antigen experience (CD44) and memory (CD27), chemokine receptors (CXCR3, CXCR6), and regulators of B-cell proliferation, cell cycle entry and immunoglobulin production (CD70). The PBMCs from AGS subjects also had increased TNF and IFN-gamma mRNA expression compared to controls. AGS is associated with a distinct gene expression profile in circulating PBMCs. DEGs related to antigen presentation, antigen-experienced T-cells, and type 2 immune responses may promote the development of alpha-gal specific IgE and the maintenance of AGS.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Food Hypersensitivity/diagnosis , Food Hypersensitivity/etiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transcription, Genetic , Adolescent , Adult , Aged , Aged, 80 and over , Allergens/immunology , Case-Control Studies , Computational Biology/methods , Diagnosis, Differential , Female , Gene Expression Profiling , Humans , Immunization , Immunoglobulin E/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Male , Middle Aged , Red Meat/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL