Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025073

ABSTRACT

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Subject(s)
Apoptosis Regulatory Proteins , Cell Cycle Proteins , Fanconi Anemia Complementation Group A Protein , Fanconi Anemia , RNA Splicing , Splicing Factor U2AF , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , DNA Repair , Endodeoxyribonucleases , Exons , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , HEK293 Cells , HeLa Cells , Protein Binding , RNA Precursors/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spliceosomes/metabolism , Spliceosomes/genetics , Splicing Factor U2AF/metabolism , Splicing Factor U2AF/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism
2.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38915655

ABSTRACT

Notch proteins undergo ligand-induced proteolysis to release a nuclear effector that influences a wide range of cellular processes by regulating transcription. Despite years of study, however, how Notch induces the transcription of its target genes remains unclear. Here, we comprehensively examined the response to human Notch1 across a time course of activation using high-resolution genomic assays of chromatin accessibility and nascent RNA production. Our data reveal that Notch induces target gene transcription primarily by releasing paused RNA polymerase II (RNAPII). Moreover, in contrast to prevailing models suggesting that Notch acts by promoting chromatin accessibility, we found that open chromatin was established at Notch-responsive regulatory elements prior to Notch signal induction, through SWI/SNF-mediated remodeling. Together, these studies show that the nuclear response to Notch signaling is dictated by the pre-existing chromatin state and RNAPII distribution at the time of signal activation.

3.
Res Sq ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352568

ABSTRACT

Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.

4.
Nat Commun ; 15(1): 848, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287033

ABSTRACT

Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double-strand break (DSB) formation, and disruption of meiotic gene expression and DSB repair in germ cells lacking NELF.


Subject(s)
RNA Polymerase II , Semen , Male , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Semen/metabolism , Meiosis/genetics , Spermatogenesis/genetics , Gene Expression
5.
Sci Transl Med ; 16(728): eade2774, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38170787

ABSTRACT

Splicing modulation is a promising treatment strategy pursued to date only in splicing factor-mutant cancers; however, its therapeutic potential is poorly understood outside of this context. Like splicing factors, genes encoding components of the cohesin complex are frequently mutated in cancer, including myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (AML), where they are associated with poor outcomes. Here, we showed that cohesin mutations are biomarkers of sensitivity to drugs targeting the splicing factor 3B subunit 1 (SF3B1) H3B-8800 and E-7107. We identified drug-induced alterations in splicing, and corresponding reduced gene expression, of a number of DNA repair genes, including BRCA1 and BRCA2, as the mechanism underlying this sensitivity in cell line models, primary patient samples and patient-derived xenograft (PDX) models of AML. We found that DNA damage repair genes are particularly sensitive to exon skipping induced by SF3B1 modulators due to their long length and large number of exons per transcript. Furthermore, we demonstrated that treatment of cohesin-mutant cells with SF3B1 modulators not only resulted in impaired DNA damage response and accumulation of DNA damage, but it sensitized cells to subsequent killing by poly(ADP-ribose) polymerase (PARP) inhibitors and chemotherapy and led to improved overall survival of PDX models of cohesin-mutant AML in vivo. Our findings expand the potential therapeutic benefits of SF3B1 splicing modulators to include cohesin-mutant MDS and AML.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Cohesins , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Mutation/genetics , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Repair/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , DNA Damage
6.
Cell ; 186(24): 5290-5307.e26, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37922899

ABSTRACT

Mammalian SWI/SNF chromatin remodeling complexes move and evict nucleosomes at gene promoters and enhancers to modulate DNA access. Although SWI/SNF subunits are commonly mutated in disease, therapeutic options are limited by our inability to predict SWI/SNF gene targets and conflicting studies on functional significance. Here, we leverage a fast-acting inhibitor of SWI/SNF remodeling to elucidate direct targets and effects of SWI/SNF. Blocking SWI/SNF activity causes a rapid and global loss of chromatin accessibility and transcription. Whereas repression persists at most enhancers, we uncover a compensatory role for the EP400/TIP60 remodeler, which reestablishes accessibility at most promoters during prolonged loss of SWI/SNF. Indeed, we observe synthetic lethality between EP400 and SWI/SNF in cancer cell lines and human cancer patient data. Our data define a set of molecular genomic features that accurately predict gene sensitivity to SWI/SNF inhibition in diverse cancer cell lines, thereby improving the therapeutic potential of SWI/SNF inhibitors.


Subject(s)
Nuclear Proteins , Transcription Factors , Animals , Humans , Chromatin , Chromatin Assembly and Disassembly , Nuclear Proteins/metabolism , Nucleosomes , Transcription Factors/genetics , Transcription Factors/metabolism , Mice
7.
Sci Transl Med ; 15(714): eadi7244, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37729434

ABSTRACT

Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.


Subject(s)
Cell Nucleus , Oncogenes , Humans , Animals , Mice , Transcriptional Activation , Co-Repressor Proteins , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/genetics , Transcription Factors , Tumor Suppressor Proteins
8.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37215034

ABSTRACT

Male germ cell development requires precise regulation of gene activity in a cell-type and stage-specific manner, with perturbations in gene expression during spermatogenesis associated with infertility. Here, we use steady-state, nascent and single-cell RNA sequencing strategies to comprehensively characterize gene expression across male germ cell populations, to dissect the mechanisms of gene control and provide new insights towards therapy. We discover a requirement for pausing of RNA Polymerase II (Pol II) at the earliest stages of sperm differentiation to establish the landscape of gene activity across development. Accordingly, genetic knockout of the Pol II pause-inducing factor NELF in immature germ cells blocks differentiation to mature spermatids. Further, we uncover unanticipated roles for Pol II pausing in the regulation of meiosis during spermatogenesis, with the presence of paused Pol II associated with double strand break formation by SPO11, and disruption of SPO11 expression in germ cells lacking NELF.

9.
Science ; 380(6642): eabn7625, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37079685

ABSTRACT

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.


Subject(s)
CDC2 Protein Kinase , Carcinogens , Melanoma , RNA Stability , RNA, Nuclear , Skin Neoplasms , Animals , CDC2 Protein Kinase/genetics , Melanoma/genetics , Mutation , RNA, Nuclear/genetics , Skin Neoplasms/genetics , Zebrafish , Humans
10.
Mol Cell ; 83(8): 1264-1279.e10, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36965480

ABSTRACT

The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.


Subject(s)
RNA Polymerase II , Ribonucleoprotein, U1 Small Nuclear , Animals , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Ribonucleoprotein, U1 Small Nuclear/genetics , Ribonucleoprotein, U1 Small Nuclear/metabolism , Transcription, Genetic , Spliceosomes/genetics , Introns/genetics , RNA Splice Sites , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Splicing , RNA Precursors/genetics , Mammals/metabolism
11.
Mol Cell ; 83(2): 186-202.e11, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36669479

ABSTRACT

PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.


Subject(s)
RNA Precursors , Transcription Factors , Animals , Mice , DNA-Binding Proteins/genetics , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Promoter Regions, Genetic , RNA Cap-Binding Proteins/genetics , RNA Polymerase II/metabolism , RNA Precursors/metabolism , Transcription Factors/metabolism , Transcription, Genetic
12.
Mol Cell ; 83(3): 416-427, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36634676

ABSTRACT

Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.


Subject(s)
Gene Expression Regulation , RNA Polymerase II , Animals , Humans , Phosphoprotein Phosphatases/genetics , Phosphorylation , RNA Polymerase II/metabolism , Transcription, Genetic , Proteins/genetics , Proteins/metabolism
13.
PLoS Genet ; 18(11): e1010528, 2022 11.
Article in English | MEDLINE | ID: mdl-36449519

ABSTRACT

The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Gene Expression Regulation , Humans , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Genes, cdc , Genome , HCT116 Cells , Cohesins
14.
Mol Cell ; 82(22): 4232-4245.e11, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36309014

ABSTRACT

RNA polymerase II (RNAPII) pausing in early elongation is critical for gene regulation. Paused RNAPII can be released into productive elongation by the kinase P-TEFb or targeted for premature termination by the Integrator complex. Integrator comprises endonuclease and phosphatase activities, driving termination by cleavage of nascent RNA and removal of stimulatory phosphorylation. We generated a degron system for rapid Integrator endonuclease (INTS11) depletion to probe the direct consequences of Integrator-mediated RNA cleavage. Degradation of INTS11 elicits nearly universal increases in active early elongation complexes. However, these RNAPII complexes fail to achieve optimal elongation rates and exhibit persistent Integrator phosphatase activity. Thus, only short transcripts are significantly upregulated following INTS11 loss, including transcription factors, signaling regulators, and non-coding RNAs. We propose a uniform molecular function for INTS11 across all RNAPII-transcribed loci, with differential effects on particular genes, pathways, or RNA biotypes reflective of transcript lengths rather than specificity of Integrator activity.


Subject(s)
Endonucleases , RNA Polymerase II , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Endonucleases/genetics , Promoter Regions, Genetic , RNA , Phosphoric Monoester Hydrolases/metabolism , Transcription, Genetic
15.
Cell Chem Biol ; 29(8): 1273-1287.e8, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35839780

ABSTRACT

Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for ß-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.


Subject(s)
Nuclear Proteins , Proteome , Carrier Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Erythroid Cells/metabolism , Nuclear Proteins/metabolism , Proteome/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism
16.
Cell ; 185(14): 2559-2575.e28, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35688146

ABSTRACT

A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.


Subject(s)
Genomics , Single-Cell Analysis , CRISPR-Cas Systems/genetics , Chromosome Mapping , Genotype , Phenotype , Single-Cell Analysis/methods
17.
Nat Struct Mol Biol ; 29(6): 613-620, 2022 06.
Article in English | MEDLINE | ID: mdl-35681023

ABSTRACT

Precise regulation of transcription by RNA polymerase II (RNAPII) is critical for organismal growth and development. However, what determines whether an engaged RNAPII will synthesize a full-length transcript or terminate prematurely is poorly understood. Notably, RNAPII is far more susceptible to termination when transcribing non-coding RNAs than when synthesizing protein-coding mRNAs, but the mechanisms underlying this are unclear. To investigate the impact of transcribed sequence on elongation potential, we developed a method to screen the effects of thousands of INtegrated Sequences on Expression of RNA and Translation using high-throughput sequencing (INSERT-seq). We found that higher AT content in non-coding RNAs, rather than specific sequence motifs, drives RNAPII termination. Further, we demonstrate that 5' splice sites autonomously stimulate processive transcription, even in the absence of polyadenylation signals. Our results reveal a potent role for the transcribed sequence in dictating gene output and demonstrate the power of INSERT-seq toward illuminating these contributions.


Subject(s)
Polyadenylation , RNA Polymerase II , High-Throughput Nucleotide Sequencing , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , Transcription, Genetic
18.
Nature ; 604(7904): 167-174, 2022 04.
Article in English | MEDLINE | ID: mdl-35355014

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are histone-modifying and -binding complexes that mediate the formation of facultative heterochromatin and are required for silencing of developmental genes and maintenance of cell fate1-3. Multiple pathways of RNA decay work together to establish and maintain heterochromatin in fission yeast, including a recently identified role for a conserved RNA-degradation complex known as the rixosome or RIX1 complex4-6. Whether RNA degradation also has a role in the stability of mammalian heterochromatin remains unknown. Here we show that the rixosome contributes to silencing of many Polycomb targets in human cells. The rixosome associates with human PRC complexes and is enriched at promoters of Polycomb target genes. Depletion of either the rixosome or Polycomb results in accumulation of paused and elongating RNA polymerase at Polycomb target genes. We identify point mutations in the RING1B subunit of PRC1 that disrupt the interaction between PRC1 and the rixosome and result in diminished silencing, suggesting that direct recruitment of the rixosome to chromatin is required for silencing. Finally, we show that the RNA endonuclease and kinase activities of the rixosome and the downstream XRN2 exoribonuclease, which degrades RNAs with 5' monophosphate groups generated by the rixosome, are required for silencing. Our findings suggest that rixosomal degradation of nascent RNA is conserved from fission yeast to human, with a primary role in RNA degradation at facultative heterochromatin in human cells.


Subject(s)
Gene Silencing , Heterochromatin , Polycomb Repressive Complex 1 , RNA Stability , Exoribonucleases/genetics , Heterochromatin/genetics , Humans , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Polycomb-Group Proteins/genetics , Schizosaccharomyces/genetics
20.
Mol Cell ; 82(6): 1156-1168.e7, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35219383

ABSTRACT

N6-methyladenosine (m6A) methylation is co-transcriptionally deposited on mRNA, but a possible role of m6A on transcription remains poorly understood. Here, we demonstrate that the METTL3/METTL14/WTAP m6A methyltransferase complex (MTC) is localized to many promoters and enhancers and deposits the m6A modification on nascent transcripts, including pre-mRNAs, promoter upstream transcripts (PROMPTs), and enhancer RNAs. PRO-seq analyses demonstrate that nascent RNAs originating from both promoters and enhancers are significantly decreased in the METTL3-depleted cells. Furthermore, genes targeted by the Integrator complex for premature termination are depleted of METTL3, suggesting a potential antagonistic relationship between METTL3 and Integrator. Consistently, we found the Integrator complex component INTS11 elevated at promoters and enhancers upon loss of MTC or nuclear m6A binders. Taken together, our findings suggest that MTC-mediated m6A modification protects nascent RNAs from Integrator-mediated termination and promotes productive transcription, thus unraveling an unexpected layer of gene regulation imposed by RNA m6A modification.


Subject(s)
Chromatin , Methyltransferases , Chromatin/genetics , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL