Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(6): 065102, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38394591

ABSTRACT

On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.

2.
Phys Rev Lett ; 129(7): 075001, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36018710

ABSTRACT

For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.

3.
J Biol Chem ; 265(25): 14796-801, 1990 Sep 05.
Article in English | MEDLINE | ID: mdl-2394697

ABSTRACT

Considerable attention is being directed toward defining a binding site in the central region of calmodulin that forms a high affinity interaction with certain enzymes and amphiphilic peptides. However, other regions of calmodulin are also known to be involved in the activation of enzymes such as myosin light chain kinase, regions which may not be directly involved in the binding of small peptides, e.g. mastoparan X. We investigated the properties of wheat calmodulin fluorescent derivatives, which were modified chemically in the first calcium binding site at Cys-27, in the activation of rabbit fast skeletal muscle myosin light chain kinase. Unmodified wheat calmodulin stimulated myosin light chain kinase to a greater maximal velocity than wheat calmodulin that was modified at Cys-27 by any of four fluorescent compounds, IAANS (2-[4'-iodoacetamidoanilino]naphthalene-6-sulfonic acid), 5-[2'-[[iodoacetyl]amino]ethyl]aminonaphthalene]-1-sulfonic acid, 5-iodoacetamidofluorescein, and 7-diethylamino-3-[4'-maleimidylphenyl]-4-methylcoumarin; the midpoints for activation of myosin light chain kinase were not significantly different for unmodified wheat calmodulin and three of the four wheat calmodulin derivatives. Myosin light chain kinase, but not mastoparan X, enhanced the fluorescence emission intensity of wheat calmodulin-IAANS. Mastoparan X reversed, in a dose-dependent manner, the changes in fluorescence intensity of a preformed complex of myosin light chain kinase and wheat calmodulin-IANNS. Thus, we propose that the region vicinal to Cys-27 participates in the activation but not the high affinity association of myosin light chain kinase. Lastly, a comparison of mammalian and plant calmodulin showed that the Vmax for the stimulation of myosin light chain kinase was 1.6-fold greater for bovine than wheat calmodulin. The difference between the two calmodulins was more pronounced at lower Ca2+ because less Ca2+ was needed to saturate the kinase rate when stimulated by bovine calmodulin.


Subject(s)
Calmodulin/metabolism , Fluorescent Dyes , Muscles/enzymology , Myosin-Light-Chain Kinase/metabolism , Animals , Binding Sites , Calmodulin/isolation & purification , Calmodulin/pharmacology , Enzyme Activation , Kinetics , Rabbits , Spectrometry, Fluorescence , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL
...