Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Assoc Res Otolaryngol ; 24(3): 365-384, 2023 06.
Article in English | MEDLINE | ID: mdl-37156973

ABSTRACT

The auditory brainstem implant (ABI) is an auditory neuroprosthesis that provides hearing by electrically stimulating the cochlear nucleus (CN) of the brainstem. Our previous study (McInturff et al., 2022) showed that single-pulse stimulation of the dorsal (D)CN subdivision with low levels of current evokes responses that have early latencies, different than the late response patterns observed from stimulation of the ventral (V)CN. How these differing responses encode more complex stimuli, such as pulse trains and amplitude modulated (AM) pulses, has not been explored. Here, we compare responses to pulse train stimulation of the DCN and VCN, and show that VCN responses, measured in the inferior colliculus (IC), have less adaption, higher synchrony, and higher cross-correlation. However, with high-level DCN stimulation, responses become like those to VCN stimulation, supporting our earlier hypothesis that current spreads from electrodes on the DCN to excite neurons located in the VCN. To AM pulses, stimulation of the VCN elicits responses with larger vector strengths and gain values especially in the high-CF portion of the IC. Additional analysis using neural measures of modulation thresholds indicate that these measures are lowest for VCN. Human ABI users with low modulation thresholds, who score best on comprehension tests, may thus have electrode arrays that stimulate the VCN. Overall, the results show that the VCN has superior response characteristics and suggest that it should be the preferred target for ABI electrode arrays in humans.


Subject(s)
Auditory Brain Stem Implants , Cochlear Nucleus , Animals , Humans , Heart Rate , Cochlear Nucleus/physiology , Hearing , Models, Animal , Electric Stimulation/methods
2.
Brain Sci ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36831793

ABSTRACT

In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.

3.
Nature ; 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109682
4.
Brain Sci ; 12(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35203968

ABSTRACT

The cochlear implant (CI) is the most successful neuroprosthesis allowing thousands of patients with profound hearing loss to recover speech understanding. Recently, cochlear implants have been proposed to subjects with residual hearing and, in these cases, shorter CIs were implanted. To be successful, it is crucial to preserve the patient's remaining hearing abilities after the implantation. Here, we quantified the effects of CI insertion on the responses of auditory cortex neurons in anesthetized guinea pigs. The responses of auditory cortex neurons were determined before and after the insertion of a 300 µm diameter CI (six stimulating electrodes, length 6 mm). Immediately after CI insertion there was a 5 to 15 dB increase in the threshold for cortical neurons from the middle to the high frequencies, accompanied by a decrease in the evoked firing rate. Analyzing the characteristic frequency (CF) values revealed that in large number of cases, the CFs obtained after insertion were lower than before. These effects were not detected in the control animals. These results indicate that there is a small but immediate cortical hearing loss after CI insertion, even with short length CIs. Therefore, efforts should be made to minimize the damages during CI insertion to preserve the cortical responses to acoustic stimuli.

5.
Behav Brain Sci ; 42: e232, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31775920

ABSTRACT

Brette presents arguments that query the existence of the neural code. However, he has neglected certain evidence that could be viewed as proof that a neural code operates in the brain. Albeit these proofs show a link between neural activity and cognition, we discuss why they fail to demonstrate the existence of an invariant neural code.


Subject(s)
Brain , Metaphor , Cognition , Male
6.
PLoS One ; 13(8): e0201771, 2018.
Article in English | MEDLINE | ID: mdl-30071005

ABSTRACT

Despite remarkable advances made to ameliorate how cochlear implants process the acoustic environment, many improvements can still be made. One of most fundamental questions concerns a strategy to simulate an increase in sound intensity. Psychoacoustic studies indicated that acting on either the current, or the duration of the stimulating pulses leads to perception of changes in how loud the sound is. The present study compared the growth function of electrically evoked Compound Action Potentials (eCAP) of the 8th nerve using these two strategies to increase electrical charges (and potentially to increase the sound intensity). Both with chronically (experiment 1) or acutely (experiment 2) implanted guinea pigs, only a few differences were observed between the mean eCAP amplitude growth functions obtained with the two strategies. However, both in chronic and acute experiments, many animals showed larger increases of eCAP amplitude with current increase, whereas some animals showed larger of eCAP amplitude with duration increase, and other animals show no difference between either approaches. This indicates that the parameters allowing the largest increase in eCAP amplitude considerably differ between subjects. In addition, there was a significant correlation between the strength of neuronal firing rate in auditory cortex and the effect of these two strategies on the eCAP amplitude. This suggests that pre-selecting only one strategy for recruiting auditory nerve fibers in a given subject might not be appropriate for all human subjects.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials , Vestibulocochlear Nerve/physiology , Animals , Biological Variation, Individual , Cochlear Implants , Female , Guinea Pigs , Male , Neurons/physiology , Time Factors
7.
Neuroscience ; 385: 11-24, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29902504

ABSTRACT

During mobile phone conversations, the temporal lobe neural networks involved in processing auditory information are exposed to electromagnetic fields (EMF) such as pulse-modulated GSM-1800 MHz radiofrequencies that convey wireless communications. The effects of these EMF on the brain affected by a pathological condition remain little investigated. In this study, rats injected with lipopolysaccharide (LPS) to induce neuroinflammation were exposed "head-only" to GSM-1800 MHz signals for two hours at a specific absorption rate (SAR) that reached an average value of 1.55 W/kg in the auditory cortex (ACx). Immunodetection of Iba1, a microglial marker, and electrophysiological recordings in the ACx three to six hours after global system for communication (GSM) exposure, or sham-exposure, showed that exposure to GSM-1800 MHz resulted in a growth of microglial processes and a reduction in spontaneous firing rate. More importantly, there was a significant reduction in evoked responses to artificial and natural stimuli and an increase in response duration. The response latency and the bandwidth of the frequency tuning were unchanged, but the GSM exposure led to a higher proportion of cortical sites exhibiting abnormally high acoustic thresholds. These modifications were not observed in rats exposed to GSM-1800 MHz without pretreatment with LPS. Together our data provide evidence that in neuroinflammatory conditions, acute exposure to GSM-1800 MHz can significantly affect microglia and neuronal activity underling auditory perception.


Subject(s)
Auditory Cortex/radiation effects , Inflammation/pathology , Microglia/radiation effects , Neurons/radiation effects , Animals , Auditory Cortex/pathology , Cell Shape/radiation effects , Electromagnetic Fields , Inflammation/chemically induced , Lipopolysaccharides , Male , Microglia/pathology , Neurons/pathology , Rats , Rats, Wistar
8.
Acta Otolaryngol ; 138(7): 610-616, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29504828

ABSTRACT

OBJECTIVES: Intratympanic injection of corticosteroids membrane after noise-induced hearing loss is an accepted alternative to general administration. We investigated the effect on hearing of a hyaluronic acid gel with liposomes loaded with dexamethasone (DexP) administered into the middle ear. METHODS: An acute acoustic trauma was performed to 13 guinea pigs for a period of 1 h on Day -2. Two 2 days after the noise trauma, the animals were then assigned randomly to four experimental groups: control without gel, gel injection, gel-containing free DexP, gel-containing DexP loaded into liposomes. Auditory thresholds were measured with Auditory Brainstem Response before Day -2 and at Day 0, Day 7 and Day 30 after noise trauma. RESULTS: Seven days after, a complete hearing recovery was observed in the control group at all frequencies apart from 8 kHz, and no recovery was observed in the three groups receiving a gel injection. Thirty days after trauma, all of the animals had recovered normal hearing, apart from at the 8-kHz frequency, with similar auditory thresholds. CONCLUSIONS: Local DexP administration 48 h after a mild acoustic trauma did not improve hearing recovery, even with a sustained release in a specific gel formulation designed for inner ear therapy.


Subject(s)
Dexamethasone/administration & dosage , Glucocorticoids/administration & dosage , Hearing Loss, Noise-Induced/drug therapy , Animals , Drug Evaluation, Preclinical , Guinea Pigs , Hyaluronic Acid , Liposomes , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...