Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 9(30): 32628-32638, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100283

ABSTRACT

The neurological condition known as narcolepsy type 1 (NT1) is an uncommon condition marked by extreme daytime sleepiness, cataplexy, sleep paralysis, hallucinations, disrupted nocturnal sleep, and low or undetectable levels of orexin in the CSF fluid. NT1 has been hypothesized to be an immunological disorder; its treatment is currently only symptomatic, and misdiagnosis is not uncommon. This study compares the N-glycome of NT1 patients with healthy controls in search of potential glycan biomarkers using LC-MS/MS. A total of 121 candidate N-glycans were identified, 55 of which were isomeric N-glycan structures and 65 were not. Seventeen N-glycan biomarker candidates showed significant differences between the NT1 and control cohorts. All of the candidate glycan biomarkers were isomeric except HexNAc6Hex7Fuc0NeuAc1 (6701) and HexNAc6Hex7Fuc1NeuAc2 (6712). Therefore, with isomeric and nonisomeric structures, a total of 20 candidate N-glycan biomarkers are reported in this study, and interestingly, all are either sialylated or sialylated-fucosylated and upregulated in NT1 relative to the control. The distribution levels of all the identified N-glycans show that the sialylated glycan type is the most abundant in NT1 and is majorly disialylated, although the trisialylated subtype is three-fold higher in NT1 compared to the healthy control. The first isomers of HexNAc5Hex6Fuc0NeuAc3 (5603), HexNAc6Hex7Fuc0NeuAc2 (6702), and HexNAc6Hex7Fuc1NeuAc4 (6714) expressed a high level of fold changes (FC) of 1.62, 2.19, and 2.98, respectively. These results suggest a different N-glycome profile of NT1 and a relationship between sialylated glycan isomers in NT1 disease development or progression. The revelation of N-glycan expression alterations in this study may improve NT1 diagnostic methods, understanding of NT1 pathology, and the development of new targeted therapeutics.

2.
J Proteome Res ; 23(4): 1458-1470, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38483275

ABSTRACT

Breast cancer is the second leading cause of cancer-related death among women and a major source of brain metastases. Despite the increasing incidence of brain metastasis from breast cancer, the underlying mechanisms remain poorly understood. Altered glycosylation is known to play a role in various diseases including cancer metastasis. However, profiling studies of O-glycans and their isomers in breast cancer brain metastasis (BCBM) are scarce. This study analyzed the expression of O-glycans and their isomers in human breast cancer cell lines (MDA-MB-231, MDA-MB-361, HTB131, and HTB22), a brain cancer cell line (CRL-1620), and a brain metastatic breast cancer cell line (MDA-MB-231BR) using nanoLC-MS/MS, identifying 27 O-glycan compositions. We observed significant upregulation in the expression of HexNAc1Hex1NeuAc2 and HexNAc2Hex3, whereas the expression of HexNAc1Hex1NeuAc1 was downregulated in MDA-MB-231BR compared to other cell lines. In our isomeric analysis, we observed notable alterations in the isomeric forms of the O-glycan structure HexNAc1Hex1NeuAc1 in a comparison of different cell lines. Our analysis of O-glycans and their isomers in cancer cells demonstrated that changes in their distribution can be related to the metastatic process. We believe that our investigation will contribute to an enhanced comprehension of the significance of O-glycans and their isomers in BCBM.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Tandem Mass Spectrometry , Brain Neoplasms/metabolism , MCF-7 Cells , Cell Line, Tumor , Polysaccharides/chemistry
3.
Methods Mol Biol ; 2762: 231-250, 2024.
Article in English | MEDLINE | ID: mdl-38315369

ABSTRACT

MS-target analyses are frequently utilized to analyze and validate structural changes of biomolecules across diverse fields of study such as proteomics, glycoproteomics, glycomics, lipidomics, and metabolomics. Targeted studies are commonly conducted using multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) techniques. A reliable glycoproteomics analysis in intricate biological matrices is possible with these techniques, which streamline the analytical workflow, lower background interference, and enhance selectivity and specificity.


Subject(s)
Metabolomics , Proteomics , Mass Spectrometry/methods , Proteomics/methods , Lipidomics , Glycomics/methods
4.
Methods Mol Biol ; 2762: 251-266, 2024.
Article in English | MEDLINE | ID: mdl-38315370

ABSTRACT

Targeted mass spectrometric analysis is widely employed across various omics fields as a validation strategy due to its high sensitivity and accuracy. The approach has been successfully employed for the structural analysis of proteins, glycans, lipids, and metabolites. Multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) have been the methods of choice for targeted structural studies of biomolecules. These target analyses simplify the analytical workflow, reduce background interference, and increase selectivity/specificity, allowing for a reliable quantification of permethylated N-glycans in complex biological matrices.


Subject(s)
Polysaccharides , Mass Spectrometry/methods , Polysaccharides/chemistry , Workflow
5.
Metabolites ; 14(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38248853

ABSTRACT

Glyphosate-based herbicides (GBHs) have gained extensive popularity in recent decades. For many years, glyphosate has been regarded as harmless or minimally toxic to mammals due to the absence of its primary target, the shikimic acid pathway in humans. Nonetheless, mounting evidence suggests that glyphosate may cause adverse health effects in humans via other mechanisms. In this study, we described the metabolomic changes in the serum of experimental rats exposed to chronic GBH using the highly sensitive LC-MS/MS technique. We investigated the possible relationship between chronic exposure to GBH and neurological disorders. Our findings suggest that chronic exposure to GBH can alter spatial learning memory and the expression of some important metabolites that are linked to neurophysiological disorders in young rats, with the female rats showing higher susceptibility compared to the males. This indicates that female rats are more likely to show early symptoms of the disorder on exposure to chronic GBH compared to male rats. We observed that four important metabolites (paraxanthine, epinephrine, L-(+)-arginine, and D-arginine) showed significant changes and involvement in neurological changes as suggested by ingenuity pathway analysis. In conclusion, our results indicate that chronic exposure to GBH can increase the risk of developing neurological disorders.

SELECTION OF CITATIONS
SEARCH DETAIL