Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 72(2): 220-225, 2024.
Article in English | MEDLINE | ID: mdl-38382975

ABSTRACT

CeO2 nanoparticles (nanoceria) were proposed as an alternative physical sunscreen agent with antioxidant properties and comparable UV absorption performance. Green synthesis of nanoceria with Ag and Ni dopants resulted in doped nanoceria with lower catalytic activity and biologically-safe characteristics. The doped nanoceria was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Rancimat Instrument, and UV-Vis Spectrophotometer for SPF (Sun Protection Factor) determination. XRD and TEM analysis showed that nanoceria had been successfully formed in nanoscale-sized with a change in crystallite size due to the crystal defect phenomenon caused by dopant addition. While the Rancimat test and band gap energy analysis were conducted to evaluate the oxidative stability and reactive oxygen species formation, it was confirmed that dopant addition could decrease catalytic activity of material, resulting in Ni-doped Ce with a longer incubation time (11.81 h) than Ag-doped Ce (10.58 h) and non-doped Ce (10.30 h). In-vitro SPF value was measured using the thin layer technique of sunscreen prototype with Virgin Coconut Oil (VCO)-based emulsion, which yielded 10.862 and 5.728 SPF values for 10% Ag-doped Ce and 10% Ni-doped Ce, respectively. The dopant addition of nanoceria could reduce catalytic activity and give a decent in vitro UV-shielding performance test; thus, Ag and Ni-doped nanoceria could be seen as promising candidates for alternative physical sunscreen agents.


Subject(s)
Cerium , Nanoparticles , Sunscreening Agents/pharmacology , Reactive Oxygen Species , Nanoparticles/chemistry , Cerium/pharmacology , Cerium/chemistry
2.
ACS Omega ; 8(49): 47086-47099, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107973

ABSTRACT

Electrodes are crucial in medical devices, specifically health monitoring devices for biopotential measurements such as electrocardiography, electromyography (EMG), and electroencephalography. The commonly used rigid electrodes have limitations in their skin-electrode contact quality since they cannot conform to the skin's surface area and body contours. Flexible electrodes have been developed to better conform to the body's surface contours, improving ion transfer and minimizing motion artifacts, thereby enhancing the signal-to-noise ratio (SNR). Bioplastic substrates based on carrageenan have been chosen for their safety, abundance, flexibility, and ease of customization. Hybrid materials of graphite and silver nanoparticles (graphite-AgNPs) exhibit high electron capacitance, low charge transfer resistance, and superior surface catalytic activity. These make them ideal as conductive fillers for bioplastics to achieve good electrical characteristics as electrodes. The effect of the graphite-AgNP filler concentration, graphite particle size, and flexible electrode thickness was evaluated to assess their impact on the electrical and mechanical properties of the fabricated flexible electrodes. The graphite-AgNP fillers were incorporated into a bioplastic matrix, resulting in flexible electrodes with improved conductivity with increasing percentages of graphite-AgNP at the expense of flexibility. The thickness of the flexible electrode was varied to evaluate its effect on the conductivity. A graphite size reduction was performed to improve the electrical properties while maintaining the mechanical properties. The most optimal variation of flexible electrodes with desirable electrical and mechanical properties was achieved by adding 25% graphite-AgNP to the carrageenan, using graphite particles of 400-700 nm, and using the thinnest electrode. The optimized electrode also exhibited an improved SNR value in EMG signal measurements compared to conventional Ag/AgCl electrodes. This research presents a novel approach to developing environmentally friendly, customizable, and flexible electrodes for medical applications.

3.
ACS Omega ; 8(18): 15932-15950, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37179601

ABSTRACT

We developed a facile preparation method of oil-in-water (O/W) Pickering emulsion in an emollient formulation using basil extract (Ocimum americanum L.) as a solid particle stabilizer by fine-tuning the concentration and mixing steps of common cosmetic formulas, such as humectants (hexylene glycol and glycerol), surfactant (Tween 20), and moisturizer (urea). The hydrophobicity of the main phenolic compounds of basil extract (BE), namely, salvigenin, eupatorin, rosmarinic acid, and lariciresinol, supported high interfacial coverage to prevent coalescence of globules. Meanwhile, the presence of carboxyl and hydroxyl groups of these compounds provides active sites for stabilizing the emulsion using urea through the formation of hydrogen bonds. Addition of humectants directed the in situ synthesis of colloidal particles during emulsification. In addition, the presence of Tween 20 can simultaneously reduce the surface tension of the oil but tends to inhibit the adsorption of solid particles at high concentrations, which otherwise formed colloidal particles in water. The level of urea and Tween 20 determined the stabilization system of the O/W emulsion, whether interfacial solid adsorption (Pickering emulsion, PE) or colloidal network (CN). Variation of the partition coefficient of the phenolic compounds present in basil extract facilitated the formation of a mixed PE and CN system with better stability. The addition of excess urea induced interfacial solid particle detachment, which caused the oil droplet enlargement. The choice of stabilization system determined the control of antioxidant activity, diffusion through lipid membranes, and cellular antiaging effects in UV-B-irradiated fibroblasts. Particle sizes of less than 200 nm were found in both stabilization systems, which is beneficial for maximizing their effects. In conclusion, this study provides a technological platform to realize the demand for natural dermal cosmetic and pharmaceutical products with strong antiaging effects.

4.
J Mater Chem B ; 9(28): 5711-5721, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34223862

ABSTRACT

Metal-organic framework (MOF) nanomaterials offer a wide range of promising applications due to their unique properties, including open micro- and mesopores and richness of functionalization. Herein, a facile synthesis via a solvothermal method was successfully employed to prepare amine-functionalized Cu-MOF nanospheres. Moreover, the growth and the morphology of the nanospheres were optimized by the addition of PVP and TEA. By functionalization with an amine group, the immobilization of a bioreceptor towards the detection of hepatitis B infection biomarker, i.e., hepatitis B surface antigen (HBsAg), could be realized. The immobilization of the bioreceptor/antibody to Cu-MOF nanospheres was achieved through a covalent interaction between the carboxyl group of the antibodies and the amino-functional ligand in Cu-MOF via EDC/NHS coupling. The amine-functionalized Cu-MOF nanospheres act not only as a nanocarrier for antibody immobilization, but also as an electroactive material to generate the electrochemical signal. The electrochemical sensing performance was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The results showed that the current response proportionally decreased with the increase of HBsAg concentration. More importantly, the sensing performance of the amine-functionalized Cu-MOF nanospheres towards HBsAg detection was found to be consistent in real human serum media. This strategy successfully resulted in wide linear range detection of HBsAg from 1 ng mL-1 to 500 ng mL-1 with a limit of detection (LOD) of 730 pg mL-1. Thus, our approach provides a facile and low-cost synthesis process of an electrochemical immunosensor and paves the way to potentially utilize MOF-based nanomaterials for clinical use.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Hepatitis B Surface Antigens/analysis , Immunoassay , Metal-Organic Frameworks/chemistry , Nanospheres/chemistry , Amines/chemistry , Copper/chemistry , Humans , Metal-Organic Frameworks/chemical synthesis
5.
Microscopy (Oxf) ; 64(5): 335-40, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26115957

ABSTRACT

The dislocation shielding field at a crack tip was experimentally proven at the atomic scale by measuring the local strain in front of the crack tip using high-resolution transmission electron microscopy (HRTEM) and geometric phase analysis (GPA). Single crystalline (110) silicon wafers were employed. Cracks were introduced using a Vickers indenter at room temperature. The crack tip region was observed using HRTEM followed by strain measurements using GPA. The measured strain field at the crack tip was compressive owing to dislocation shielding, which is in good agreement with the strain field calculated from elastic theory.

SELECTION OF CITATIONS
SEARCH DETAIL