Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Econ Entomol ; 116(5): 1750-1759, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37556392

ABSTRACT

Detecting and sampling the pest for pest management, either through enumerating their life stages or by quantifying the crop damage, is the cornerstone in deploying integrated pest management. Currently, for spotted-wing drosophila, Drosophila suzukii Matsumura, larval extraction from the fruit samples involves immersing the fruits in hot water, salt, or sugar solution. We are introducing a novel, fast, and effective larval sampling technique where D. suzukii larvae can be extracted from infested fruits by subjecting the fruit samples to vacuum pressure. We optimized the vacuum pressure and vacuum duration for larval extraction from blueberries by testing a range of vacuum pressures and durations. A vacuum pressure of -98 kPa for 60 min resulted in the maximum larval recovery of the small, medium, and large larvae from blueberries. A 30-min incubation at -98 kPa also yielded similar results. Larval extraction at -98 kPa for 60 min on average recovered 61, 70, and 83% of larvae from 2, 4, and 6-day incubated fruit samples, respectively. The fruit sample size (37, 149, and 298 g) did not affect the larval extraction efficacy. Additionally, comparing larval extraction efficacy at -98 kPa with the salt and sugar extraction, incubated for 10, 30, and 60 min, suggests that vacuum extraction is comparable to or more efficient than the salt and sugar methods in extracting larvae from the infested blueberries. Overall, our results indicate that vacuum sampling is a promising method for detecting D. suzukii larval infestation in small fruit crops.


Subject(s)
Blueberry Plants , Fruit , Animals , Drosophila , Larva , Crops, Agricultural , Sugars , Insect Control
2.
Insects ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835744

ABSTRACT

Asian bean thrips, Megalurothrips usitatus Bagnall, are a serious pest of vegetable crops, especially leguminous crops, across the Asian continent. In Florida, it is a new invasive pest of snap beans. In 2019, it was recorded for the first time in the United States in snap bean (Phaseolus vulgaris) fields. Another thrips species, melon thrips, Thrips palmi Karny, is also a serious pest that affects several vegetable crops. Within-plant and within-field distribution patterns of M. usitatus and T. palmi were determined in snap bean fields in southern Florida. The highest number of both thrips species (Asian bean thrips and melon thrips) in snap beans were in flowers, followed by leaves and pods. Both adults and immatures of these thrips exhibited regular to clumped distribution patterns in bean fields. Several statistical indices showed agreement in the distribution patterns of Asian bean thrips, melon thrips, and larvae, irrespective of sampling units and plot size, in three years of study. In most instances, the distribution of Asian bean thrips and melon thrips was aggregated. This study assessed the optimum sample size to accurately determine the population density of these thrips for management purposes. The results from this study will be useful for implementing targeted management programs against thrips pests, thereby reducing labor costs and time. This information will also help reduce agrochemical use.

3.
J Econ Entomol ; 115(6): 1995-2003, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36209398

ABSTRACT

Spotted-wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), is an invasive pest of thin-skinned fruits in the United States. Monitoring traps are an integral part of SWD integrated pest management, allowing early detection and timely management of this pest. An ideal monitoring trap should be easy to use, effective in capturing SWD, sensitive and selective to male SWD which are easy to identify due to their spotted wings, and able to predict fruit infestation from trap captures. Deli-cup-based liquid traps (grower standard), which make in-situ observations difficult, were compared with red-panel sticky traps, both baited with commercial lures (Scentry, Trécé Broad-Spectrum (BS), and Trécé High-Specificity (HS)), across several US states in blueberries (lowbush and highbush), blackberry, raspberry, and cherry crops during 2018 and 2021. Results showed that red-panel traps effectively captured SWD, were able to detect male SWD early in the season while also being selective to male SWD all season-long, and in some cases linearly related male SWD trap captures with fruit infestation. Scentry and Trécé BS lures captured similar numbers of SWD, though Trécé BS and Trécé HS were more selective for male SWD in red panel traps than liquid traps in some cases. In conclusion, due to its ease of use with less processing time, red-panel traps are promising tools for detecting and identifying male SWD in-situ and for predicting fruit infestation. However, further research is needed to refine the trap captures and fruit infestation relationship and elucidate the trap-lure interactions in berry and cherry crops.


Subject(s)
Blueberry Plants , Rubus , Male , Animals , Drosophila , Fruit , Insect Control/methods , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL
...