Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EClinicalMedicine ; 62: 102109, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533419

ABSTRACT

Background: In a parallel-group, international, phase 3 study (ClinicalTrials.govNCT04762680), we evaluated prototype (D614) and Beta (B.1.351) variant recombinant spike protein booster vaccines with AS03-adjuvant (CoV2 preS dTM-AS03). Methods: Adults, previously primed with mRNA (BNT162b2, mRNA-1273), adenovirus-vectored (Ad26.CoV2.S, ChAdOx1nCoV-19) or protein (CoV2 preS dTM-AS03 [monovalent D614; MV(D614)]) vaccines were enrolled between 29 July 2021 and 22 February 2022. Participants were stratified by age (18-55 and ≥ 56 years) and received one of the following CoV2 preS dTM-AS03 booster formulations: MV(D614) (n = 1285), MV(B.1.351) (n = 707) or bivalent D614 + B.1.351 (BiV; n = 625). Unvaccinated adults who tested negative on a SARS-CoV-2 rapid diagnostic test (control group, n = 479) received two primary doses, 21 days apart, of MV(D614). Anti-D614G and anti-B.1.351 antibodies were evaluated using validated pseudovirus (lentivirus) neutralization (PsVN) assay 14 days post-booster (day [D]15) in 18-55-year-old BNT162b2-primed participants and compared with those pre-booster (D1) and on D36 in 18-55-year-old controls (primary immunogenicity endpoints). PsVN titers to Omicron BA.1, BA.2 and BA.4/5 subvariants were also evaluated. Safety was evaluated over a 12-month follow-up period. Planned interim analyses are presented up to 14 days post-last vaccination for immunogenicity and over a median duration of 5 months for safety. Findings: All three boosters elicited robust anti-D614G or -B.1.351 PsVN responses for mRNA, adenovirus-vectored and protein vaccine-primed groups. Among BNT162b2-primed adults (18-55 years), geometric means of the individual post-booster versus pre-booster titer ratio (95% confidence interval [CI]) were: for MV (D614), 23.37 (18.58-29.38) (anti-D614G); for MV(B.1.351), 35.41 (26.71-46.95) (anti-B.1.351); and for BiV, 14.39 (11.39-18.28) (anti-D614G) and 34.18 (25.84-45.22 (anti-B.1.351). GMT ratios (98.3% CI) versus post-primary vaccination GMTs in controls, were: for MV(D614) booster, 2.16 (1.69; 2.75) [anti-D614G]; for MV(B.1.351), 1.96 (1.54; 2.50) [anti-B.1.351]; and for BiV, 2.34 (1.84; 2.96) [anti-D614G] and 1.39 (1.09; 1.77) [anti-B.1.351]. All booster formulations elicited cross-neutralizing antibodies against Omicron BA.2 (across priming vaccine subgroups), Omicron BA.1 (BNT162b2-primed participants) and Omicron BA.4/5 (BNT162b2-primed participants and MV D614-primed participants). Similar patterns in antibody responses were observed for participants aged ≥56 years. Reactogenicity tended to be transient and mild-to-moderate severity in all booster groups. No safety concerns were identified. Interpretation: CoV2 preS dTM-AS03 boosters demonstrated acceptable safety and elicited robust neutralizing antibodies against multiple variants, regardless of priming vaccine. Funding: Sanofi and Biomedical Advanced Research and Development Authority (BARDA).

2.
PLoS Negl Trop Dis ; 15(2): e0009162, 2021 02.
Article in English | MEDLINE | ID: mdl-33544730

ABSTRACT

BACKGROUND: The prevalence of developmental alterations associated with in-utero Zika virus (ZIKV) exposure in children is not well understood. Furthermore, estimation of the Population Attributable Fraction (PAF) of developmental alterations attributed to ZIKV has not been performed due to lack of population-based cohorts with data on symptomatic and asymptomatic ZIKV exposures and an appropriate control group. The aim of this study was to characterize neurodevelopmental outcomes of children at 11 to 32 months of age with intrauterine ZIKV exposure and estimate the PAF of alterations secondary to ZIKV exposure. METHODOLOGY/PRINCIPAL FINDINGS: We performed a cohort of biannual community-based prospective serosurveys in a slum community in Salvador, Brazil. We recruited women participating in our cohort, with a documented pregnancy from January 2015 to December 2016 and children born to those mothers. Children were classified as ZIKV exposed in utero (born from women with ZIKV seroconversion during pregnancy) or unexposed (born from women without ZIKV seroconversion or that seroconverted before/after pregnancy) by using an IgG monoclonal antibody blockade-of-binding (BoB). We interviewed mothers and performed anthropometric, audiometric, ophthalmological, neurologic, and neurodevelopmental evaluations of their children at 11 to 32 months of age. Among the 655 women participating in the cohort, 66 (10%) were pregnant during the study period. 46 (70%) of them completed follow-up, of whom ZIKV seroconversion occurred before, during, and after pregnancy in 25 (54%), 13 (28%), and 1 (2%), respectively. The rest of women, 7 (21.2%), did not present ZIKV seroconversion. At 11 to 32 months of life, the 13 ZIKV-exposed children had increased risk of mild cognitive delay (RR 5.1; 95%CI 1.1-24.4) compared with the 33 children unexposed, with a PAF of 53.5%. Exposed children also had increased risk of altered auditory behavior (RR 6.0; 95%CI 1.3-26.9), with a PAF of 59.5%. CONCLUSIONS: A significant proportion of children exposed in utero to ZIKV developed mild cognitive delay and auditory behavioral abnormalities even in the absence of gross birth defects such as microcephaly and other neurodevelopmental domains. Furthermore, our findings suggest that over half of these abnormalities could be attributed to intrauterine ZIKV exposure.


Subject(s)
Poverty Areas , Urban Population , Zika Virus Infection/epidemiology , Adolescent , Adult , Antibodies, Monoclonal , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Microcephaly/epidemiology , Middle Aged , Mothers , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Prospective Studies , Young Adult , Zika Virus , Zika Virus Infection/diagnosis
3.
J Infect Dis ; 224(5): 860-864, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33395487

ABSTRACT

To understand the disease burden of sexually transmitted Zika virus (ZIKV), we prospectively followed a cohort of 359 adult and adolescent residents of an urban community in Salvador, Brazil, through the 2015 ZIKV epidemic. Later, in 2017, we used a retrospective survey to associate sexual behavior during the epidemic with ZIKV infection as defined by immunoglobulin G3 NS1 enzyme-linked immunosorbent assay. We found that males who engaged in casual sexual encounters during the epidemic were more likely (adjusted odds ratio, 6.2 [95% confidence interval, 1.2-64.1]) to be ZIKV positive, suggesting that specific groups may be at increased risk of sexually transmitted infections.


Subject(s)
Poverty Areas , Sexual Behavior , Sexually Transmitted Diseases, Viral/epidemiology , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Adolescent , Adult , Female , Humans , Male , Retrospective Studies , Urban Population
4.
Elife ; 102021 01 26.
Article in English | MEDLINE | ID: mdl-33496263

ABSTRACT

Leptospirosis is the leading zoonotic disease in terms of morbidity and mortality worldwide. Effective prevention is urgently needed as the drivers of disease transmission continue to intensify. The key challenge has been developing a widely applicable vaccine that protects against the >300 serovars that can cause leptospirosis. Live attenuated mutants are enticing vaccine candidates and poorly explored in the field. We evaluated a recently characterized motility-deficient mutant lacking the expression of a flagellar protein, FcpA. Although the fcpA- mutant has lost its ability to cause disease, transient bacteremia was observed. In two animal models, immunization with a single dose of the fcpA- mutant was sufficient to induce a robust anti-protein antibodies response that promoted protection against infection with different pathogenic Leptospira species. Furthermore, characterization of the immune response identified a small repertoire of biologically relevant proteins that are highly conserved among pathogenic Leptospira species and potential correlates of cross-protective immunity.


Leptospirosis is a life-threatening disease with flu-like symptoms that is caused by bacteria known as Leptospira. It is more common in warmer regions with high rainfall, especially in impoverished areas. The disease is spread in the urine of animals such as rodents, farm animals or dogs. Humans and other animals can get leptospirosis when they come in contact with urine-contaminated water and soil. Current measures to control leptospirosis are largely ineffective. Although a vaccine is available for animals, it only protects against a few types of the 300 disease-causing Leptospira bacteria. It also fails to stop the bacteria from colonizing the kidneys of the infected animals, which means that vaccinated animals can still spread disease. Previous research has shown that inactivating a protein called FcpA, which is necessary for Leptospira bacteria to move, can stop them from infecting hamsters. Moreover, when these animals were exposed to the mutant bacteria, they did not get sick nor developed the disease. Here, Wunder et al. tested whether bacteria lacking the FcpA protein could be used as an attenuated vaccine. This form of vaccine contains live bacteria that have been modified to become harmless but are able to train the immune system to produce a long-lasting immune response against the invaders. The results showed that a single dose of the vaccine was enough to prevent hamsters and mice from dying of leptospirosis. It also worked against several types of Leptospira and could stop them from colonizing mice kidneys. Moreover, Wunder et al. found that the immune system targeted specific proteins that were common to various types of Leptospira, which may explain the broad spectrum of protection the vaccine offered. Rapid urbanization and climate change are among the main drivers of leptospirosis. An effective vaccine for this disease would reduce the public health burden by providing protection against leptospirosis and by reducing the spread of the disease. A next step will be to ensure the mutant Leptospira are safe to use in animals and potentially humans.


Subject(s)
Bacterial Vaccines/immunology , Cross Protection/immunology , Leptospira interrogans/immunology , Leptospirosis/prevention & control , Vaccines, Attenuated/immunology , Animals , Female , Male , Mesocricetus , Mice , Mice, Inbred C57BL
5.
Sci Immunol ; 5(47)2020 05 01.
Article in English | MEDLINE | ID: mdl-32358170

ABSTRACT

A stabilized form of the respiratory syncytial virus (RSV) fusion (F) protein has been explored as a vaccine to prevent viral infection because it presents several potent neutralizing epitopes. Here, we used a structure-based rational design to optimize antigen presentation and focus antibody (Ab) responses to key epitopes on the pre-fusion (pre-F) protein. This protein was fused to ferritin nanoparticles (pre-F-NP) and modified with glycans to mask nonneutralizing or poorly neutralizing epitopes to further focus the Ab response. The multimeric pre-F-NP elicited durable pre-F-specific Abs in nonhuman primates (NHPs) after >150 days and elicited potent neutralizing Ab (NAb) responses in mice and NHPs in vivo, as well as in human cells evaluated in the in vitro MIMIC system. This optimized pre-F-NP stimulated a more potent Ab response than a representative pre-F trimer, DS-Cav1. Collectively, this pre-F vaccine increased the generation of NAbs targeting the desired pre-F conformation, an attribute that facilitates the development of an effective RSV vaccine.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Nanoparticles/chemistry , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/chemistry , Viral Fusion Proteins/immunology , Animals , Antibody Formation , Antigens, Viral/immunology , Female , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Vaccines/chemistry , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/chemistry
6.
Science ; 363(6427): 607-610, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30733412

ABSTRACT

The clinical outcomes associated with Zika virus (ZIKV) in the Americas have been well documented, but other aspects of the pandemic, such as attack rates and risk factors, are poorly understood. We prospectively followed a cohort of 1453 urban residents in Salvador, Brazil, and, using an assay that measured immunoglobulin G3 (IgG3) responses against ZIKV NS1 antigen, we estimated that 73% of individuals were infected during the 2015 outbreak. Attack rates were spatially heterogeneous, varying by a factor of 3 within a community spanning 0.17 square kilometers. Preexisting high antibody titers to dengue virus were associated with reduced risk of ZIKV infection and symptoms. The landscape of ZIKV immunity that now exists may affect the risk for future transmission.


Subject(s)
Antibodies, Viral/blood , Cross Reactions , Dengue/immunology , Viral Nonstructural Proteins/immunology , Zika Virus Infection/immunology , Adolescent , Adult , Basic Reproduction Number , Brazil , Child , Disease Outbreaks , Female , Humans , Immunoglobulin G/blood , Male , Prospective Studies , Seroepidemiologic Studies , Urban Population , Young Adult , Zika Virus
7.
Article in English | MEDLINE | ID: mdl-29971217

ABSTRACT

Leptospirosis is a worldwide zoonosis, responsible for more than 1 million cases and 60,000 deaths every year. Among the 13 pathogenic species of the genus Leptospira, serovars belonging to L. interrogans serogroup Icterohaemorrhagiae are considered to be the most virulent strains, and responsible for majority of the reported severe cases. Serovars Copenhageni and Icterohaemorrhagiae are major representatives of this serogroup and despite their public health relevance, little is known regarding the genetic differences between these two serovars. In this study, we analyzed the genome sequences of 67 isolates belonging to L. interrogans serovars Copenhageni and Icterohaemorrhagiae to investigate the influence of spatial and temporal variations on DNA sequence diversity. Out of the 1072 SNPs identified, 276 were in non-coding regions and 796 in coding regions. Indel analyses identified 258 indels, out of which 191 were found in coding regions and 67 in non-coding regions. Our phylogenetic analyses based on SNP dataset revealed that both serovars are closely related but showed distinct spatial clustering. However, likelihood ratio test of the indel data statistically confirmed the presence of a frameshift mutation within a homopolymeric tract of lic12008 gene (related to LPS biosynthesis) in all the L. interrogans serovar Icterohaemorrhagiae strains but not in the Copenhageni strains. Therefore, this internal indel identified can genetically distinguish L. interrogans serovar Copenhageni from serovar Icterohaemorrhagiae with high discriminatory power. To our knowledge, this is the first study to identify global sequence variations (SNPs and Indels) in L. interrogans serovars Copenhageni and Icterohaemorrhagiae.


Subject(s)
DNA, Bacterial/genetics , Genetic Variation , Leptospira interrogans/genetics , Leptospirosis/microbiology , Serogroup , Animals , Genome, Bacterial/genetics , Genome-Wide Association Study , Humans , Leptospira interrogans/isolation & purification , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Virulence/genetics
8.
Article in English | MEDLINE | ID: mdl-29600195

ABSTRACT

Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Leptospira/physiology , Leptospirosis/microbiology , Signal Transduction , Evolution, Molecular , Genome, Bacterial , Humans , Leptospira/pathogenicity , Microbial Viability , Models, Biological , Mutation , Transcription, Genetic , Virulence/genetics , Whole Genome Sequencing
9.
PLoS Negl Trop Dis ; 10(2): e0004403, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26890609

ABSTRACT

Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.


Subject(s)
Genome, Bacterial , Leptospira/genetics , Leptospirosis/microbiology , Leptospirosis/veterinary , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Secretion Systems , Base Sequence , Evolution, Molecular , Genomics , Humans , Leptospira/classification , Leptospira/isolation & purification , Leptospira/pathogenicity , Molecular Sequence Data , Phylogeny , Protein Sorting Signals , Virulence
10.
Fungal Genet Biol ; 48(11): 1020-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21840412

ABSTRACT

Our previous in silico studies identified a high-affinity nickel transporter, TNC, from the metal transportome of Neurospora crassa. A knockout mutant of the tnc gene in N. crassa failed to transport nickel, showed phenotypic growth defects and diminished urease activity under physiological levels of nickel. Transport assays conducted in wild type and knockout mutant strains showed that TNC transports nickel with high affinity but exhibits selectivity for other transition metal ions like cobalt. Heterologous complementation of Schizosaccharomyces pombe nickel uptake mutant by TNC further substantiates its nickel transport function. Transcriptional analysis of the nickel transporter encoding gene, tnc in N. crassa by qRT-PCR showed its constitutive expression in various phases of its life cycle. However, levels of the corresponding protein TNC were down-regulated only by increasing the nickel, but not cobalt concentration in the media. Immunolocalisation data suggested that TNC is distributed in the plasma membrane of N. crassa. Thus, the present study establishes TNC as a functional plasma membrane nickel transporter necessary for physiological acquisition of nickel in the multicellular fungi N. crassa.


Subject(s)
Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Neurospora crassa/genetics , Neurospora crassa/metabolism , Nickel/metabolism , Cell Membrane/chemistry , Cobalt/metabolism , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Gene Knockout Techniques , Genetic Complementation Test , Neurospora crassa/enzymology , Neurospora crassa/growth & development , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Substrate Specificity , Urease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...