Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Type of study
Publication year range
1.
Curr Microbiol ; 79(9): 287, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962289

ABSTRACT

The study of community composition and community structure is important to know the ecological behaviour and community dynamics of the participating species and to understand the molecular interplay that lies between them. The community diversity greatly lies in the physiological status of the host and the environmental factors. The present study aims to explore the endophytic bacterial communities and their dynamics in the pre-flowering and post-flowering seasons in the horticulturally important Mango (Mangifera indica L.) and its hemiparasites: Loranthus parasiticus (L.) Marr. and Macrosolen colchinchinensis (Lour.) Tiegh. through a metagenomic approach using the sequence of V3 region of 16S rRNA gene. The genera Bacillus, Acinetobacter and Corynebacterium, under the phyla Firmicutes, Proteobacteria and Actinobacteria, respectively, were found to be the most abundant genera present in mango and its hemiparasites. It was found that during the post-flowering season, the twigs and leaves of mango had lesser endophytes than in other seasons while the alpha-diversity indices of the representative genera were the highest in L. parasiticus during the same seasons. However, in M. colchinchinensis, the alpha diversity was also higher in the post-flowering season similar to another hemiparasite plant L. parasiticus. The ecological, taxonomic and complex correlation studies unravelled that the hemiparasites act as the potent reservoirs of endophytic communities throughout the year and during favourable conditions, these bacterial communities disseminate to the mango plant.


Subject(s)
Mangifera , Bacteria/genetics , Endophytes/genetics , Mangifera/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seasons
2.
Braz J Microbiol ; 53(4): 2039-2050, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35907141

ABSTRACT

Mycorrhizae association is reported to enhance the survivability of the host plant under adverse environmental conditions. The present study aims to explore the mycorrhizal association in the roots of different ecotypes of a threatened medicinal plant, Clerodendrum indicum (L.) O. Kuntze (Verbenaceae), collected from W.B., India, which correlates the degree of root colonization to the nutritional status of the native soil. Ten ecotypes of C. indicum having diverse morphological variations were collected. The mycorrhizae were characterized by both morphological and molecular methods. The nutritional status of the native soils was estimated. The study revealed that all the ecotypes have an association with mycorrhizal forms like hyphae, arbuscules, and vesicles. The molecular analysis showed Glomus intraradices and Rhizophagus irregularis as the associated arbuscular mycorrhizal fungi (AMF). A significant variation in arbuscule and vesicle formation was found growing in the varied nutritional statuses concerning soil parameters. The arbuscule was found negatively correlated with pH, conductivity, and potassium and positively correlated with organic carbon, nitrogen, and phosphorus. The vesicle was found positively correlated with pH, organic carbon, and potassium and negatively correlated with conductivity, nitrogen, and phosphorus. The interaction between conductivity: nitrogen, conductivity: phosphorus, organic-carbon: nitrogen, and pH: conductivity was significant in influencing vesicle formation. However, none of the interactions between parameters was found significant in influencing arbuscule formation. Thus, the study concludes that G. intraradices and R. irregularis are the principle mycorrhizae forming the symbiotic association with the threatened medicinal plant, C. indicum. They form vesicles and arbuscules based on their soil nutritive factors. Therefore, a large-scale propagation through a selective AMF association would help in the conservation of this threatened species from extinction.


Subject(s)
Clerodendrum , Mycorrhizae , Plants, Medicinal , Verbenaceae , Mycorrhizae/genetics , Plant Roots/microbiology , Phosphorus , Soil , Nitrogen , Carbon , Potassium
3.
Braz J Microbiol ; 53(2): 903-920, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35138631

ABSTRACT

Lactococcus spp. are industrially crucial lactic acid bacteria (LAB) used to manufacture lactic acid, pickled vegetables, buttermilk, cheese, and many kinds of delicious dairy foods and drinks. In addition to these, they are also being used as probiotics in specific formulations. However, their uses as probiotics are comparatively less than the other LAB genera. The present communication hypothesizes to validate the probiotic potentiality of two new Lactococcus lactis subsp. lactis strains for their future uses. These native food fermenting strains were characterized for in vitro acid tolerance, tolerance to simulated gastric and pancreatic juices, autoaggregation and co-aggregation, hydrophobicity, haemolytic activity, bile salt deconjugation, cholesterol removal, antimicrobial spectrum, and antibiotic sensitivity. The in vivo live bacterial feeding of these strains for 30 days was done in Swiss albino mice either singly or in combination with prebiotic inulin and evaluated for hypocholesterolemic activity, immune enhancement, and gut colonization efficiency and compared with the commercial probiotic consortia. The study revealed that the strains could survive in human gut bile concentration, gastric pH conditions at pH 2.0, 3.0, and 8.0 for 6 h, had a broad antibacterial spectrum, and cholesterol binding efficacy. The strains could survive with higher colony-forming units (CFU/mL) when amended with sodium caseinate. The strains had autoaggregation ranges from 15 to 25% over 24 h and had a significant co-aggregation with both lactic acid and Gram-positive and Gram-negative bacterial strains related to human illness. The strains also showed solvent and media-specific hydrophobicity against n-hexane and xylene. The live bacterial feeding either singly or in combination with prebiotic inulin resulted in a significant reduction of LDL (low-density lipoprotein), VLDL (very low-density lipoprotein) cholesterol and triglyceride (TG), and a significant increase in HDL (high-density lipoprotein) cholesterol level, and improved gut colonization and gut immunomodulation. The results prove that these non-haemolytic, non-toxic strains had significant health benefits than the commercial probiotics consortium with the recommended prebiotics mix. Thus, these new Lactococcus lactis subsp. lactis strains could be trialled as a new probiotic combination for human and animal feeds.


Subject(s)
Lactobacillales , Lactococcus lactis , Probiotics , Synbiotics , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria , Inulin , Lactic Acid/metabolism , Lactococcus lactis/metabolism , Lipoproteins, LDL , Mice
4.
Braz J Microbiol ; 52(2): 905-917, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33715141

ABSTRACT

The main objective of the study is to characterize two new strains of Aspergillus fumigatus through morphometric, biochemical, molecular methods, and to evaluate their antimicrobial potentiality. The micro-morphotaxonomy, growth, and metabolic behavior of the strains, nHF-01 and PPR-01, were studied in different growth conditions and compared with standard strain. The molecular characterization was done by sequencing the ncrDNA ITS1-5.8S-ITS2 and D1-D2 domains of the nc 28S rDNA region and compared with a secondary structure-based phylogenetic tree. The secretory antimicrobials and pigments were characterized by TLC, UV-Vis, and FT-IR spectroscopy. Both the strains showed distinct growth patterns in different nutritional media and could assimilate a wide range of carbohydrates with distinctive biochemical properties. The molecular characterization revealed the strains, nHF-01 and PPR-01, as Aspergillus fumigatus (GenBank Accession No. MN190286 and MN190284, respectively). It was observed that the strain nHF-01 produces red to brownish pigments having mild antimicrobial activity while the strain PPR-01 does not represent such transformations. The extractable compounds had a significant antimicrobial potentiality against the human pathogenic bacteria. From this analysis, it can be concluded that the nHF-01 and PPR-01 strains are distinct from other A. fumigatus by their unique characters. Large-scale production and detailed molecular elucidation of the antimicrobial compounds may lead to the discovery of new antimicrobial compounds from these strains.


Subject(s)
Anti-Infective Agents/metabolism , Aspergillus fumigatus/metabolism , Anti-Infective Agents/pharmacology , Aspergillus fumigatus/classification , Aspergillus fumigatus/genetics , Aspergillus fumigatus/growth & development , Culture Media/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Humans , Phylogeny , Pigments, Biological/metabolism , Pigments, Biological/pharmacology , Sequence Analysis, DNA , Species Specificity
5.
Antonie Van Leeuwenhoek ; 113(10): 1489-1505, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32789713

ABSTRACT

Bacteria need to adopt to different behavioral tuning depending on the dynamic eco-physiological conditions they are exposed to. One of these adaptive strategies is the use of motility. Here we report the twitching motility response of four endophytic isolates of Bacillus sp. when exposed to different eco-physiological stimuli like different nutrient sources, and mechanical and chemical antagonists on solid surfaces. These endophytic bacteria were isolated from different parts of a hemiparasite Loranthus sp. Jacq. (Loranthaceae) growing on economically important mango trees. The results show that the twitching motility of these bacteria was more when exposed to organic acids, metals salts (among nutrients) and mechanical shearing (stress) than the other factors. Their motility is not affected by surface lubrication or EPS production, but instead is influenced by shear-sensitive structures and affinity to metal ions. Further molecular studies are needed to elucidate the basis of this twitching behaviour on solid surfaces.


Subject(s)
Bacteria/isolation & purification , Bacterial Physiological Phenomena , Endophytes , Loranthaceae/microbiology , Acids/metabolism , Bacteria/classification , Bacteria/genetics , Carbon/metabolism , Culture Media , Metals/metabolism , Nitrogen/metabolism , Organic Chemicals/metabolism , Organic Chemicals/pharmacology , Phenotype , Polysaccharides, Bacterial , Stress, Physiological
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-664148

ABSTRACT

Natural bioactive compounds from plants are of great importance in modem therapeutics,which are used to prepare antibiotics,growth supplements or some other therapeutics.L-theanine is such a bioactive amide amino acid presented in different plants and fungi,especially in tea.Theanine has influential effects on lifestyle associated diseases,such as diabetes,cardiovascular disorders,hypertension,stress relief,tumor suppression,menstruation and liver injury.This amino acid can maintain normal sleep and improve memory function and nullify effect of the neurotoxins.The rate of bioavailability and its medium of ingestion in the body is one of the great concerns for its additional antioxidant properties.Pharmacokinetics of the bioactive compound and its mode of action are described herewith.The biosynthesis and industrial synthesis are also reviewed to promote accelerated production of this bioactive compound in the pharmaceutical industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...