Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 369: 122336, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39243422

ABSTRACT

Nutrient imbalances, such as high boron (B) stress, occur within, as well as across, agricultural systems worldwide and have become an important abiotic factor that reduces soil fertility and inhibits plant growth. Sugar beet is a B-loving crop and is better suited to be grown in high B environments, but the methods and mechanisms regarding the enhancement of high-B stress tolerance traits are not clear. The main objective of this research was to elucidate the effects of the alone and/or combined foliar spraying of zinc sulfate (ZnSO4) and methyl jasmonate (MeJA) on the growth parameters, tolerance, and photochemical performance of sugar beet under high-B stress. Results demonstrated that the photosynthetic performance was inhibited under high-B stress, with a reduction of 11.33% in the net photosynthetic rate (Pn) and an increase of 25.30% in the tolerance index. The application of ZnSO4, MeJA, and their combination enhanced sugar beet's adaptability to high-B stress, with an increase in Pn of 9.22%, 4.49%, and 2.85%, respectively, whereas the tolerance index was elevated by 15.33%, 8.21%, and 5.19%, respectively. All three ameliorative treatments resulted in increased photochemical efficiency (Fv/Fm) and the photosynthetic performance index (PIABS) of PSII. Additionally, they enhanced the light energy absorption (ABS/RC) and trapping capacity (DIO/RC), reduced the thermal energy dissipation (TRO/RC), and facilitated the QA to QB transfer in the electron transport chain (ETC) of PSII, which collectively improved the photochemical performance. Therefore, spraying both ZnSO4 and MeJA can better alleviate high-B stress and promote the growth of sugar beet, but the combined spraying effect of ZnSO4 and MeJA is lower than that of individual spraying. This study provides a reference basis for enhancing the ability of sugar beet and other plants to tolerate high-B stress and for sugar beet cultivation in high B areas.


Subject(s)
Acetates , Beta vulgaris , Boron , Cyclopentanes , Oxylipins , Photosynthesis , Plant Leaves , Zinc , Beta vulgaris/drug effects , Beta vulgaris/growth & development , Beta vulgaris/radiation effects , Cyclopentanes/pharmacology , Photosynthesis/drug effects , Plant Leaves/drug effects , Acetates/pharmacology , Stress, Physiological
2.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936071

ABSTRACT

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Subject(s)
Antioxidants , Charcoal , Helianthus , Microplastics , Oryza , Soil , Oryza/metabolism , Oryza/growth & development , Oryza/drug effects , Antioxidants/metabolism , Charcoal/pharmacology , Helianthus/metabolism , Helianthus/drug effects , Helianthus/growth & development , Soil/chemistry , Photosynthesis/drug effects , Soil Pollutants/metabolism , Oxidative Stress/drug effects , Biomass , Secondary Metabolism , Proline/metabolism
3.
Environ Pollut ; 350: 123952, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38641035

ABSTRACT

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.


Subject(s)
Antioxidants , Cadmium , Oryza , Soil Pollutants , Oryza/genetics , Oryza/metabolism , Cadmium/toxicity , Antioxidants/metabolism , Soil Pollutants/toxicity , Zinc/toxicity , Zinc Oxide/toxicity , Zinc Oxide/pharmacology , Metal Nanoparticles/toxicity
4.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460406

ABSTRACT

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Subject(s)
Ammi , Soil Pollutants , Titanium , Antioxidants/metabolism , Ammi/metabolism , Microplastics/metabolism , Plastics/metabolism , Chromium/analysis , Ecosystem , Oxidative Stress , Soil , Gene Expression , Soil Pollutants/analysis
5.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466444

ABSTRACT

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Subject(s)
Arsenic , Basidiomycota , Metals, Heavy , Mycorrhizae , Oryza , Humans , Phosphorus/metabolism , Oryza/metabolism , Metals, Heavy/metabolism , Mycorrhizae/metabolism , Crops, Agricultural/metabolism , Plant Roots/metabolism
6.
Plant Physiol Biochem ; 206: 108277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104397

ABSTRACT

Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.


Subject(s)
Beta vulgaris , Plant Leaves , Zinc , Calcium , Chlorophyll , Fertilizers , Magnesium , Photosynthesis , Plant Leaves/chemistry , Sugars , Zinc/pharmacology
7.
Rice (N Y) ; 16(1): 28, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37354226

ABSTRACT

Inadvertent accumulation of arsenic (As) in rice (Oryza sativa L.) is a concern for people depending on it for their subsistence, as it verily causes epigenetic alterations across the genome as well as in specific cells. To ensure food safety, certain attempts have been made to nullify this highest health hazard encompassing physiological, chemical and biological methods. Albeit, the use of mycorrhizal association along with nutrient reinforcement strategy has not been explored yet. Mechanisms of response and resistance of two rice genotypes to As with or without phosphorus (P) nutrition and Serendipita indica (S. indica; S.i) colonization were explored by root transcriptome profiling in the present study. Results revealed that the resistant genotype had higher auxin content and root plasticity, which helped in keeping the As accumulation and P starvation response to a minimum under alone As stress. However, sufficient P supply and symbiotic relationship switched the energy resources towards plant's developmental aspects rather than excessive root proliferation. Higher As accumulating genotype (GD-6) displayed upregulation of ethylene signaling/biosynthesis, root stunting and senescence related genes under As toxicity. Antioxidant defense system and cytokinin biosynthesis/signaling of both genotypes were strengthened under As + S.i + P, while the upregulation of potassium (K) and zinc (Zn) transporters depicted underlying cross-talk with iron (Fe) and P. Differential expression of phosphate transporters, peroxidases and GSTs, metal detoxification/transport proteins, as well as phytohormonal metabolism were responsible for As detoxification. Taken together, S. indica symbiosis fortified with adequate P-fertilizer can prove to be effective in minimizing As acquisition and accumulation in rice plants.

8.
Ecotoxicol Environ Saf ; 256: 114866, 2023 May.
Article in English | MEDLINE | ID: mdl-37023649

ABSTRACT

The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.


Subject(s)
Arsenic , Oryza , Phosphorus , Soil Pollutants , Humans , Arsenic/toxicity , Chromatography, Liquid , Oryza/metabolism , Oryza/microbiology , Phosphorus/analysis , Plant Roots/metabolism , Secondary Metabolism , Tandem Mass Spectrometry , Soil Pollutants/toxicity
9.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985867

ABSTRACT

In the current scenario, the rising concentration of heavy metals (HMs) due to anthropogenic activities is a severe problem. Plants are very much affected by HM pollution as well as other abiotic stress such as salinity and drought. It is very important to fulfil the nutritional demands of an ever-growing population in these adverse environmental conditions and/or stresses. Remediation of HM in contaminated soil is executed through physical and chemical processes which are costly, time-consuming, and non-sustainable. The application of nanobionics in crop resilience with enhanced stress tolerance may be the safe and sustainable strategy to increase crop yield. Thus, this review emphasizes the impact of nanobionics on the physiological traits and growth indices of plants. Major concerns and stress tolerance associated with the use of nanobionics are also deliberated concisely. The nanobionic approach to plant physiological traits and stress tolerance would lead to an epoch of plant research at the frontier of nanotechnology and plant biology.

10.
Plant Physiol Biochem ; 197: 107619, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36931121

ABSTRACT

Boron (B) deficiency and consequent limitation of plant yield and quality, particularly of sugar beet (Beta vulgaris L.) has emerged as a maior problem,which is exacerbating due to cultivar dependent variability in B deficiency tolerance. Pertinently, the current study was designed to elucidate the physiological and molecular mechanisms of B deficiency tolerance of sugar beet varieties KWS1197 (B-efficient variety) and KWS0143 (B-inefficient variety). A hydroponic experiment was conducted employing two B levels B0.1 (0.1 µM L-1 H3BO3, deficiency) and B50 (50 µM L-1 H3BO3, adequacy). Boron deficiency greatly inhibited root elongation and dry matter accumulation; however, formation of lateral roots stimulated and average root diameter was increased. Results exhibited that by up-regulating the expression of NIP5-1, NIP6-1, and BOR2, and suppressing the expression of BOR4, cultivar KWS1197, in contrast to KWS0143, managed to transfer sufficient amount of B to the aboveground plant parts, facilitating its effective absorption and utilization. Accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) was also mellowed in KWS1197, as well as the oxidative damage to root cells via preservation of the antioxidant enzyme system. Additionally, the expression of essential enzymes for biosynthesis of phytohormone (PYR/PYL) and lignin (COMT, POX, and CCoAOMT) were found to be highly up-regulated in KWS1197. Deductively, through effective B absorption and transportation, balanced nutrient accumulation, and an activated antioxidant enzyme system, B-efficient cultivars may cope with B deficiency while retaining a superior cellular structure to enable root development.


Subject(s)
Antioxidants , Beta vulgaris , Antioxidants/metabolism , Beta vulgaris/metabolism , Boron/metabolism , Oxidative Stress , Sugars/metabolism , Plant Roots/metabolism
11.
Plant Physiol Biochem ; 196: 634-646, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36791535

ABSTRACT

Barley (Hordeum vulgare L.) is one of the most important cereal crop in the world, and is also the one being seriously affected by heavy metals, particularly aluminium (Al). Keeping in view the utility of barley as food, fodder and raw material for traditional beer brewing, the top-notch quality and higher production of this crop must be sustained. Phosphorus (P) has a quintessential role in plant growth with a potential to relieve symptoms caused by Al poisoning. Displaying a phytopromotive and stress alleviatory potential, Piriformospora indica (P. indica) can improve the stress tolerance in crops. Several studies have been conducted to evaluate the mechanism of Al translocation in a variety of crops including barley, however, the bio-remediative studies related to detoxification and/or sequestration of metals are scarce. Therefore, the current study was carried out to elucidate the tolerance mechanism of an Al-sensitive barley cultivar ZU9 following the colonization with P. indica and exogenous P supply by physio-biochemical, elemental, leaf ultrastructural and root proteome analyses. When compared to the Al alone treated counterparts, the Al + P + P.i treated plants exhibited 4.1-, 1.38-, 2.7 and 1.35-fold improved root and shoot fresh and dry weights, respectively. With the provision of additional phosphorus, the content of P in the root and shoot for Al + P + P.i group was reportedly higher (71.6% and 49.5%, respectively) as compared to the control group. Moreover, inoculation of P. indica combined with P improved barley leaves' cell arrangement and also maintained normal cell wall shape. The root protemics experiment was divided into three groups: Al, Al + P.i and Al + P + P.i. In total, 28, 598, and 823 differentially expressed proteins were found in Al + P.i vs. Al and Al + P + P.i vs. Al, and phenylpropanoid biosynthesis was the most prominently enriched pathway, which contributed significantly to the recuperating effects of P-P. indica interaction. Conslusively, it was found that the percentage of protein related to peroxidase was 70/359 (Al + P + P.i vs. Al) and 92/447 (Al + P + P.i vs. Al + P.i), respectively, which indicated that P. indica in combination with P might be involved in the regulation of peroxidases, increasing the adaptability of barley plants by enhanced reactive oxygen species (ROS) scavenging mechansism.


Subject(s)
Basidiomycota , Hordeum , Hordeum/metabolism , Aluminum/toxicity , Aluminum/metabolism , Plant Roots/metabolism , Phosphorus/metabolism , Proteomics , Basidiomycota/physiology , Stress, Physiological
12.
Front Plant Sci ; 13: 927229, 2022.
Article in English | MEDLINE | ID: mdl-36304399

ABSTRACT

Optimizing nitrogen (N) fertilization without sacrificing grain yield is a major concern of rice production system because most of the applied N has been depleted from the soil and creating environmental consequences. Hence, limited information is available about nutrient management (NM) performance at a specific site under alternate wetting and drying (AWD) irrigation compared to conventional permanent flooding (PF). We aimed to inquire about the performance of NM practices compared to the farmer's fertilizer practice (FFP) under PF and AWD on rhizospheric nitrifier and denitrifier abundance, rice yield, plant growth, and photosynthetic parameters. Two improved NM practices; nutrient management by pig manure (NMPM); 40% chemical N replaced by pig manure (organic N), and nutrient management by organic slow-release fertilizer (NMSR); 40% chemical N replaced by organic slow-release N were compared. The results showed an increased total grain yield (16.06%) during AWD compared to PF. Compared to conventional FFP, NMPM, and NMSR significantly increased the yields by 53.84 and 29.67%, respectively, during AWD. Meanwhile, PF prompted a yield increase of 45.07 and 28.75% for NMPM and NMSR, respectively, (p < 0.05) compared to FFP. Besides, a significant correlation was observed between grain yield and nitrogen content during AWD (R 2 = 0.58, p < 0.01), but no significant correlation was observed during PF. The NMPM contributed to photosynthetic attributes and the relative chlorophyll content under both watering events. Moreover, relatively higher abundances of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were observed during AWD, and the highest value was found after the late panicle stage. Our results suggest that the AWD-NMPM model is the best option to stimulate nitrifier and denitrifier gene abundance and promote rice production.

13.
Front Plant Sci ; 13: 982668, 2022.
Article in English | MEDLINE | ID: mdl-36147244

ABSTRACT

In the context of eco-sustainable acquisition of food security, arsenic (As) acts as a deterring factor, which easily infiltrates our food chain via plant uptake. Therefore, devising climate-smart strategies becomes exigent for minimizing the imposed risks. Pertinently, Serendipita indica (S. indica) is well reputed for its post-symbiotic stress alleviatory and phyto-promotive potential. Management of phosphorus (P) is acclaimed for mitigating arsenic toxicity in plants by inhibiting the uptake of As molecules due to the competitive cationic exchange in the rhizosphere. The current study was designed to investigate the tandem effects of S. indica and P in combating As toxicity employing two rice genotypes, i.e., Guodao-6 (GD-6; As-sensitive genotype) and Zhongzhe You-1 (ZZY-1; As-tolerant genotype). After successful fungal colonization, alone and combined arsenic (10 µ M L-1) and phosphorus (50 µ M L-1) treatments were applied. Results displayed that the recuperating effects of combined S. indica and P treatment were indeed much profound than their alone treatments; however, most of the beneficial influences were harnessed by ZZY-1 in comparison with GD-6. Distinct genotypic differences were observed for antioxidant enzyme activities, which were induced slightly higher in S. indica-colonized ZZY-1 plants, with or without additional P, as compared to GD-6. Ultrastructure images of root and shoot exhibited ravages of As in the form of chloroplasts-, nuclei-and cell wall-damage with enlarged vacuole area, mellowed mostly by the combined treatment of S. indica and P in both genotypes. Gene expression of PHTs family transporters was regulated at different levels in almost all treatments across genotypes. Conclusively, the results of this study validated the promising role of S. indica and additional P in mitigating As stress, albeit corroborated that the extent of relevant benefit exploitation is highly genotype-dependent. Verily, unlocking the potential of nature-friendly solutions will mend the anthropogenic damage already been done to our environment.

14.
Ecotoxicol Environ Saf ; 230: 113128, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34979311

ABSTRACT

Consumption of rice (Oryza sativa L.) is one of the major pathways for heavy metal bioaccumulation in humans over time. Understanding the molecular responses of rice to heavy metal contamination in agriculture is useful for eco-toxicological assessment of cadmium (Cd) and its interaction with zinc (Zn). In certain crops, the impacts of Cd stress or Zn nutrition on the biophysical chemistry and gene expression have been widely investigated, but their molecular interactions at transcriptomic level, particularly in rice roots, are still elusive. Here, hydroponic investigations were carried out with two rice genotypes (Yinni-801 and Heizhan-43), varying in Cd contents in plant tissues to determine their transcriptomic responses upon Cd15 (15 µM) and Cd15+Zn50 (50 µM) treatments. High throughput RNA-sequencing analysis confirmed that 496 and 2407 DEGs were significantly affected by Cd15 and Cd15+Zn50, respectively, among which 1016 DEGs were commonly induced in both genotypes. Multitude of DEGs fell under the category of protein kinases, such as calmodulin (CaM) and calcineurin B-like protein-interacting protein kinases (CBL), indicating a dynamic shift in hormonal signal transduction and Ca2+ involvement with the onset of treatments. Both genotypes expressed a mutual regulation of transcription factors (TFs) such as WRKY, MYB, NAM, AP2, bHLH and ZFP families under both treatments, whereas genes econding ABC transporters (ABCs), high affinity K+ transporters (HAKs) and Glutathione-S-transferases (GSTs), were highly up-regulated under Cd15+Zn50 in both genotypes. Zinc addition triggered more signaling cascades and detoxification related genes in regulation of immunity along with the suppression of Cd-induced DEGs and restriction of Cd uptake. Conclusively, the effective integration of breeding techniques with candidate genes identified in this study as well as economically and technologically viable methods, such as Zn nutrient management, could pave the way for selecting cultivars with promising agronomic qualities and reduced Cd for sustainable rice production.

15.
Front Plant Sci ; 13: 1101171, 2022.
Article in English | MEDLINE | ID: mdl-36726677

ABSTRACT

Boron (B) deficiency severely affects the quality of sugar beet production, and the employment of nutrient-efficient varieties for cultivation is a crucial way to solve environmental and resource-based problems. However, the aspect of leaf photosynthetic performance among B-efficient sugar beet cultivars remains uncertain. The B deficient and B-sufficient treatments were conducted in the experiment using KWS1197 (B-efficient) and KWS0143 (B-inefficient) sugar beet cultivars as study materials. The objective of the present study was to determine the impacts of B deficiency on leaf phenotype, photosynthetic capacity, chloroplast structure, and photochemical efficiency of the contrasting B-efficiency sugar beet cultivars. The results indicated that the growth of sugar beet leaves were dramatically restricted, the net photosynthetic rate was significantly decreased, and the energy flux, quantum yield, and flux ratio of PSII reaction centers were adversely affected under B deficiency. Compared to the KWS0143 cultivar, the average leaf area ratio of the KWS1197 cultivar experienced less impact, and its leaf mass ratio (LMR) increased by 26.82% under B deficiency, whereas for the KWS0143 cultivar, the increase was only 2.50%. Meanwhile, the light energy capture and utilization capacity of PSII reaction centers and the proportion of absorbed light energy used for electron transfer were higher by 3.42% under B deficiency; KWS1197 cultivar managed to alleviate the photo-oxidative damage, which results from excessive absorbed energy (ABS/RC), by increasing the dissipated energy (DIo/RC). Therefore, in response to B deprivation, the KWS1197 cultivar demonstrated greater adaptability in terms of morphological indices and photosynthetic functions, which not only explains the improved performance but also renders the measured parameters as the key features for varietal selection, providing a theoretical basis for the utilization of efficient sugar beet cultivars in future.

16.
J Hazard Mater ; 424(Pt C): 126511, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34246522

ABSTRACT

Heavy metal accumulation in arable lands and water bodies has become one of the serious global issues among multitude of food security challenges. In particular, cadmium (Cd) concentration has been increasing substantially in the environment that negatively affects the growth and yield of important agricultural crops, especially wheat (Triticum aestivum L.). No doubt, nanotechnology is a revolutionary science but the comprehension of nanoparticle-plants interaction and its potential alleviatory role against metal stress is still elusive. Here, we investigated the mechanistic role of astaxanthin nanoparticles (AstNPs) in Cd stress amelioration and their interaction with wheat under Cd-spiked conditions. The AstNPs fabrication was confirmed through ultraviolet visible spectroscopy, where the particles showed characteristic peak at 423 nm. However, Fourier transform infrared, X-ray diffraction, scanning electron microscopy and transmission electron microscopy analyses confirmed the presence of stabilized spherical-shaped nanocrystals of AstNPs within the size range of 12.03-30.37 nm. The hydroponic application of AstNPs (100 mg L-1) to Cd-affected wheat plants increased shoot height (59%), shoot dry weight (31%), nitrogen concentration (42%), and phosphorus concentration (26%) as compared to non-treated Cd affected seedlings. Moreover, AstNPs-treated plants showed reduction in acropetal Cd translocation (29%) in contrast to plants treated with Cd only. Under Cd-spiked conditions, AstNPs-treated plants displayed an improved nutrient profile (P, N, K+ and Ca2+) with a relative decrease in Na+ content in comparison with non-treated plants. Interestingly, it was found that AstNPs restricted the translocation of Cd to aerial plant parts by negatively regulating Cd transporter genes (TaHMA2 and TaHMA3), and relieved plants from oxidative burst by activating antioxidant machinery via triggering expressions of TaSOD and TaPOD genes. Consequently, it was observed that the application of AstNPs helped in maintaining the nutrient acquisition and ionic homeostasis in Cd-affected wheat plants, which subsequently improved the physiochemical profiles of plants under Cd-stress. This study suggests that AstNPs plausibly serve as stress stabilizers for plants under heavy metal-polluted environment.


Subject(s)
Nanoparticles , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Nanoparticles/toxicity , Seedlings/chemistry , Soil Pollutants/analysis , Triticum , Xanthophylls
17.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884904

ABSTRACT

Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses.


Subject(s)
Antioxidants/metabolism , Hordeum/physiology , Plant Proteins/genetics , Potassium/metabolism , Chlorophyll/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Genotype , Hordeum/drug effects , Hordeum/genetics , Lipid Peroxidation/drug effects , Osmoregulation/drug effects , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Polyethylene Glycols/adverse effects , Secondary Metabolism/drug effects , Sodium/metabolism , Tibet
18.
Front Microbiol ; 12: 699699, 2021.
Article in English | MEDLINE | ID: mdl-34721315

ABSTRACT

A Myriad of biotic and abiotic factors inevitably affects the growth and production of tobacco (Nicotiana tabacum L.), which is a model crop and sought-after worldwide for its foliage. Among the various impacts the level of disease severity poses on plants, the influence on the dynamics of phyllospheric microbial diversity is of utmost importance. In China, recurring reports of a phyto-pathogen, Didymella segeticola, a causal agent of tobacco leaf spot, accentuate the need for its in-depth investigation. Here, a high-throughput sequencing technique, IonS5TMXL was employed to analyze tobacco leaves infected by D. segeticola at different disease severity levels, ranging from T1G (least disease index) to T4G (highest disease index), in an attempt to explore the composition and diversity of phyllospheric microbiota. In all healthy and diseased tobacco leaves, the most dominant fungal phylum was Ascomycota with a high prevalence of genus Didymella, followed by Boeremia, Meyerozyma and Alternaria, whereas in the case of bacterial phyla, Proteobacteria was prominent with Pseudomonas being a predominant genus, followed by Pantoea. The relative abundance of fungi, i.e., Didymella and Boeremia (Ascomycota) and bacteria, i.e., Pseudomonas and Pantoea (Proteobacteria) were higher in diseased groups compared to healthy groups. Healthy tissues exhibited relatively rich and diverse fungal communities in contrast with diseased groups. The infection of D. segeticola had a complex and significant effect on fungal as well as bacterial alpha diversity. FUNGuild analysis indicated that the relative abundance of pathotrophs and saprotrophs in diseased tissues proportionally increased with disease severity. PICRUSt analysis of diseased tissues indicated that the relative abundance of bacterial cell motility and membrane transport-related gene sequences elevated with an increase in disease severity from T1G to T3G and then tended to decrease at T4G. Conclusively, the current study shows the typical characteristics of the tobacco leaf microbiome and provides insights into the distinct microbiome shifts on tobacco leaves infected by D. segeticola.

19.
Plants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834617

ABSTRACT

The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.

20.
Ecotoxicol Environ Saf ; 220: 112390, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34098428

ABSTRACT

Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.


Subject(s)
Basidiomycota/physiology , Cadmium/toxicity , Oryza/drug effects , Oryza/microbiology , Plant Roots/drug effects , Antioxidants/metabolism , Biomass , Chlorophyll/metabolism , Environmental Pollutants/toxicity , Malondialdehyde/metabolism , Oryza/metabolism , Photosynthesis , Plant Roots/metabolism , Plant Roots/microbiology , Proteomics , Seedlings/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL