Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 30: 265-276, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26555376

ABSTRACT

In skeletal muscle, the stem cell niche is important for controlling the quiescent, proliferation and differentiation states of satellite cells, which are key for skeletal muscle regeneration after wounding. It has been shown that type I collagen, often used as 3D-scaffolds for regenerative medicine purposes, impairs myoblast differentiation. This is most likely due to the absence of specific extracellular matrix proteins providing attachment sites for myoblasts and/or myotubes. In this study we investigated the differentiation capacity of primary murine myoblasts on type I collagen films either untreated or modified with elastin, laminin, type IV collagen, laminin/entactin complex, combinations thereof, and Matrigel as a positive control. Additionally, increased reactive oxygen species (ROS) and ROCK signaling might also be involved. To measure ROS levels with live-cell microscopy, fibronectin-coated glass coverslips were additionally coated with type I collagen and Matrigel onto which myoblasts were differentiated. On type I collagen-coated coverslips, myotube formation was impaired while ROS levels were increased. However, anti-oxidant treatment did not enhance myotube formation. ROCK inhibition, which generally improve cellular attachment to uncoated surfaces or type I collagen, enhanced myoblast attachment to type I collagen-coated coverslips and -films, but slightly enhanced myotube formation. Only modification of type I collagen films by Matrigel and a combination of laminin/entactin significantly improved myotube formation. Our results indicate that type I collagen scaffolds can be modified by satellite cell niche factors of which specifically laminin and entactin enhanced myotube formation. This offers a promising approach for regenerative medicine purposes to heal skeletal muscle wounds. STATEMENT OF SIGNIFICANCE: In this manuscript we show for the first time that impaired myotube formation on type I collagen scaffolds can be completely restored by modification with laminin and entactin, two extracellular proteins from the satellite cell niche. This offers a promising approach for regenerative medicine approaches to heal skeletal muscle wounds.


Subject(s)
Collagen Type I , Laminin , Membrane Glycoproteins , Membranes, Artificial , Muscle Fibers, Skeletal/metabolism , Wound Healing , Animals , Cattle , Collagen Type I/chemistry , Collagen Type I/pharmacology , Laminin/chemistry , Laminin/pharmacology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/pharmacology , Mice , Muscle Fibers, Skeletal/pathology
2.
J Microsc ; 218(Pt 3): 253-62, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15958019

ABSTRACT

Fluorescence resonance energy transfer (FRET) is an extremely effective tool to detect molecular interaction at suboptical resolutions. One of the techniques for measuring FRET is acceptor photobleaching: the increase in donor fluorescence after complete acceptor photobleaching is a measure of the FRET efficiency. However, in wide-field microscopy, complete acceptor photobleaching is difficult due to the low excitation intensities. In addition, the method is sensitive to inadvertent donor bleaching, autofluorescence and bleed-through of excitation light. In the method introduced in this paper, donor and acceptor intensities are monitored continuously during acceptor photobleaching. Subsequently, curve fitting is used to determine the FRET efficiency. The method was demonstrated on cameleon (YC2.1), a FRET-based Ca(2+) indicator, and on a CFP-YFP fusion protein expressed in HeLa cells. FRET efficiency of cameleon in the presence of 1 mm Ca(2+) was 31 +/- 3%. In the absence of Ca(2+) a FRET efficiency of 15 +/- 2% was found. A FRET efficiency of 28% was found for the CFP-YFP fusion protein in HeLa cells. Advantages of the method are that it does not require complete acceptor photobleaching, it includes correction for spectral cross-talk, donor photobleaching and autofluorescence, and is relatively simple to use on a normal wide-field microscope.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence/methods , Photobleaching , HeLa Cells , Humans , Luminescent Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...