Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Arch Virol ; 169(3): 64, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451333

ABSTRACT

Tomato necrotic ringspot virus (TNRV) was first reported in Thailand in 2011, where it continues to reduce the yield and quality of pepper and tomato crops. Here, we report the complete genome sequence of TNRV isolate chilli-CR derived from next-generation sequencing. The TNRV genome comprises 16,595 nucleotides (nt) on three RNA segments. The L RNA is 8,858 nt, the M RNA is 4,724 nt, and the S RNA is 3,013 nt in length. The genome structure and organization are typical of orthotospoviruses, encoding five proteins, named L, NSm, GNGC, NSs, and N. Pairwise comparison of each genomic RNA segment and its deduced amino acid (aa) sequence showed that TNRV chilli-CR shares 73.6-82.3% nt sequence identity and 81.1-91.9% aa sequence identity with pepper chlorotic spot virus (PCSV). Similar phylogenetic groupings were observed based on each genomic RNA or deduced aa sequence, and with concatenated genomic RNA sequences. The clustering of TNRV and PCSV in all phylogenetic analyses, and the 78.9% overall nt sequence identity observed using the concatenated genomic RNAs suggest that TNRV is a distinct orthotospovirus and that analysis of concatenated orthotospovirus genome sequences will be of value in future phylogenetic studies of this virus group.


Subject(s)
Nepovirus , Solanum lycopersicum , Thailand , Phylogeny , High-Throughput Nucleotide Sequencing , Necrosis , Nucleotides , RNA
2.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38059782

ABSTRACT

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Subject(s)
RNA Viruses , Viruses , RNA Viruses/genetics , Genome, Viral , Viruses/genetics , Negative-Sense RNA Viruses , Nucleoproteins/genetics , Virus Replication , Virion/genetics
3.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38064269

ABSTRACT

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Subject(s)
Genome, Viral , RNA Viruses , RNA Viruses/genetics , Negative-Sense RNA Viruses , Nucleoproteins/genetics , Virus Replication , Virion/genetics
4.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38112172

ABSTRACT

Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae.


Subject(s)
Arthropods , RNA Viruses , Viruses , Animals , Genome, Viral , RNA Viruses/genetics , Viruses/genetics , Negative-Sense RNA Viruses , Virus Replication , Virion/genetics
5.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38116934

ABSTRACT

Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae.


Subject(s)
RNA Viruses , Viruses , Genome, Viral , Viruses/genetics , RNA Viruses/genetics , Phylogeny , Nucleoproteins/genetics , Virus Replication
6.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38116933

ABSTRACT

Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae.


Subject(s)
Arthropods , RNA Viruses , Viruses , Animals , Genome, Viral , RNA Viruses/genetics , Viruses/genetics , Negative-Sense RNA Viruses , Virus Replication , Virion/genetics
7.
J Gen Virol ; 104(12)2023 12.
Article in English | MEDLINE | ID: mdl-38117185

ABSTRACT

Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae.


Subject(s)
RNA Viruses , Negative-Sense RNA Viruses , Nucleoproteins , Open Reading Frames , RNA
8.
Phytopathology ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856697

ABSTRACT

Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified and comparison to other orthotospoviruses revealed sequence conservation within virus clades and some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV (RB-TSWV) and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against RB-TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance and combining them with other resistance genes could further extend the utility of this disease control strategy.

9.
Pathogens ; 12(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37764927

ABSTRACT

Whitefly, Bemisia tabaci Gennadius (B cryptic species), transmits cucurbit leaf crumple virus (CuLCrV) in a persistent fashion. CuLCrV affects several crops such as squash and snap bean in the southeastern United States. CuLCrV is often found as a mixed infection with whitefly transmitted criniviruses, such as cucurbit yellow stunting disorder virus (CYSDV) in hosts such as squash, or as a single infection in hosts such as snap bean. The implications of different host plants (inoculum sources) with varying infection status on CuLCrV transmission/epidemics is not clear. This study conducted a series of whitefly mediated CuLCrV transmission experiments. In the first experiment, three plants species: squash, snap bean, and tobacco were inoculated by whiteflies feeding on field-collected mixed-infected squash plants. In the second experiment, three plant species, namely squash, snap bean, and tobacco with varying infection status (squash infected with CuLCrV and CYSDV and snap bean and tobacco infected with CuLCrV), were used as inoculum sources. In the third experiment, squash plants with differential CuLCrV accumulation levels and infection status (either singly infected with CuLCrV or mixed infected with CuLCrV and CYSDV) were used as inoculum sources. Irrespective of plant species and its infection status, CuLCrV accumulation in whiteflies was dependent upon the CuLCrV accumulation in the inoculum source plants. Furthermore, differential CuLCrV accumulation in whiteflies resulted in differential transmission, CuLCrV accumulation, and disease phenotype in the recipient squash plants. Overall, results demonstrate that whitefly mediated CuLCrV transmission between host plants follows a virus density dependent phenomenon with implications for epidemics.

10.
J Gen Virol ; 104(8)2023 08.
Article in English | MEDLINE | ID: mdl-37622664

ABSTRACT

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Subject(s)
Negative-Sense RNA Viruses , RNA Viruses , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/genetics
11.
Viruses ; 15(2)2023 01 26.
Article in English | MEDLINE | ID: mdl-36851571

ABSTRACT

Sida golden mosaic virus (SiGMV) was first detected from snap bean (Phaseolus vulgaris L.) in Florida in 2006 and recently in Georgia in 2018. Since 2018, it has caused significant economic losses to snap bean growers in Georgia. This study, using a SiGMV isolate field-collected from prickly sida (Sida spinosa L.), examined the putative host range, vector-mediated transmission, and SiGMV-modulated effects on host-vector interactions. In addition, this study analyzed the phylogenetic relationships of SiGMV with other begomoviruses reported from Sida spp. Host range studies confirmed that SiGMV can infect seasonal crops and perennial weed species such as snap bean, hollyhock (Alcea rosea L.), marsh mallow (Althaea officinalis L.), okra (Abelmoschus esculentus (L.) Moench), country mallow (Sida cordifolia L.), prickly sida (S. spinosa), and tobacco (Nicotiana tabacum L.). The incidence of infection ranged from 70 to 100%. SiGMV-induced symptoms and virus accumulation varied between hosts. The vector, Bemisia tabaci Gennadius, was able to complete its life cycle on all plant species, irrespective of SiGMV infection status. However, SiGMV infection in prickly sida and country mallow positively increased the fitness of whiteflies, whereas SiGMV infection in okra negatively influenced whitefly fitness. Whiteflies efficiently back-transmitted SiGMV from infected prickly sida, hollyhock, marsh mallow, and okra to snap bean, and the incidence of infection ranged from 27 to 80%. Complete DNA-A sequence from this study shared 97% identity with SiGMV sequences reported from Florida and it was determined to be closely related with sida viruses reported from the New World. These results suggest that SiGMV, a New World begomovirus, has a broad host range that would allow its establishment in the farmscapes/landscapes of the southeastern United States and is an emerging threat to snap bean and possibly other crops.


Subject(s)
Begomovirus , Mosaic Viruses , Phaseolus , Begomovirus/genetics , Phylogeny , Georgia , Crops, Agricultural
12.
Phytopathology ; 113(3): 567-576, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36222536

ABSTRACT

Tomato chlorotic spot virus (TCSV) is a highly destructive, thrips-transmitted, emerging orthotospovirus in various vegetable and ornamental crops. It is important to reduce the risk of spreading this virus by limiting the movement of infected plant materials to other geographic areas by utilizing point-of-care diagnostics. Current diagnostic assays for TCSV require costly lab equipment, skilled personnel, and electricity. Here, we report the development of a simple rechargeable battery-operated handwarmer-assisted reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay and demonstrate a step-by-step protocol to achieve in-field detection of TCSV. Under field conditions, handwarmer-assisted RT-LAMP can detect as little as 0.9 pg/µl of total RNA from TCSV-infected tomato plants in <35 min. When fully charged, the field-portable device can be used in six consecutive RT-LAMP detection assays, yielding test results for 96 individual samples. Dye-based colorimetric methods, including pH and metal ion indicators, were evaluated to eliminate laboratory-dependent LAMP visualization. Phenol red combined with hydroxynaphthol blue was adopted in the handwarmer-assisted RT-LAMP detection method to obtain a more robust color difference distinguishable by the naked eye. Overall, handwarmer-assisted RT-LAMP is a rapid, highly sensitive, and cost-effective diagnostic technique that can be used by nonspecialist personnel in the field, particularly in rural production areas lacking access to a diagnostic lab or constant electricity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Solanum lycopersicum , Plant Diseases , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , Sensitivity and Specificity , Molecular Diagnostic Techniques
13.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36437428

ABSTRACT

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Subject(s)
Mononegavirales , Viruses , Humans , Mononegavirales/genetics , Phylogeny
14.
Cells ; 11(13)2022 06 29.
Article in English | MEDLINE | ID: mdl-35805143

ABSTRACT

Begomoviruses are transmitted by several cryptic species of the sweetpotato whitefly, Bemisia tabaci (Gennadius), in a persistent and circulative manner. Upon virus acquisition and circulative translocation within the whitefly, a multitude of molecular interactions occur. This study investigated the differentially expressed transcript profiles associated with the acquisition of the Old World monopartite begomovirus, tomato yellow leaf curl virus (TYLCV), and two New World bipartite begomoviruses, sida golden mosaic virus (SiGMV) and cucurbit leaf crumple virus (CuLCrV), in two invasive B. tabaci cryptic species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED). A total of 881 and 559 genes were differentially expressed in viruliferous MEAM1 and MED whiteflies, respectively, compared with their non-viruliferous counterparts, of which 146 genes were common between the two cryptic species. For both cryptic species, the number of differentially expressed genes (DEGs) associated with TYLCV and SiGMV acquisition were higher compared with DEGs associated with CuLCrV acquisition. Pathway analysis indicated that the acquisition of begomoviruses induced differential changes in pathways associated with metabolism and organismal systems. Contrasting expression patterns of major genes associated with virus infection and immune systems were observed. These genes were generally overexpressed and underexpressed in B. tabaci MEAM1 and MED adults, respectively. Further, no specific expression pattern was observed among genes associated with fitness (egg production, spermatogenesis, and aging) in viruliferous whiteflies. The weighted gene correlation network analysis of viruliferous B. tabaci MEAM1 and MED adults identified different hub genes potentially implicated in the vector competence and circulative tropism of viruses. Taken together, the results indicate that both vector cryptic species and the acquired virus species could differentially affect gene expression.


Subject(s)
Begomovirus , Hemiptera , Animals , Begomovirus/genetics , Hemiptera/metabolism , Male , Middle East
15.
Viruses ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: mdl-35632844

ABSTRACT

Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) are two of the most invasive members of the sweetpotato whitefly, Bemisia tabaci, cryptic species complexes and are efficient vectors of begomoviruses. Bemisia tabaci MEAM1 is the predominant vector of begomoviruses in open-field vegetable crops in the southeastern United States. However, recently B. tabaci MED also has been detected in the landscape outside of greenhouses in Florida and Georgia. This study compared the transmission efficiency of one Old-World (OW) and two New-World (NW) begomoviruses prevalent in the southeastern United States, viz., tomato yellow leaf curl virus (TYLCV), cucurbit leaf crumple virus (CuLCrV), and sida golden mosaic virus (SiGMV) between B. tabaci MEAM1 and B. tabaci MED. Bemisia tabaci MEAM1 efficiently transmitted TYLCV, CuLCrV, or SiGMV, whereas B. tabaci MED only transmitted TYLCV. Percent acquisition and retention of OW TYLCV following a 72 h acquisition access period was significantly higher for B. tabaci MED than B. tabaci MEAM1. In contrast, B. tabaci MEAM1 acquired and retained significantly more NW bipartite begomoviruses, CuLCrV or SiGMV, than B. tabaci MED. Quantitative analysis (qPCR) of virus DNA in whitefly internal tissues revealed reduced accumulation of CuLCrV or SiGMV in B. tabaci MED than in B. tabaci MEAM1. Fluorescent in situ hybridization (FISH) showed localization of CuLCrV or SiGMV in the midgut of B. tabaci MED and B. tabaci MEAM1. However, localization of CuLCrV or SiGMV was only observed in the primary salivary glands of B. tabaci MEAM1 and not B. tabaci MED. TYLCV localization was observed in all internal tissues of B. tabaci MEAM1 and B. tabaci MED. Overall, results demonstrate that both B. tabaci MEAM1 and B. tabaci MED are efficient vectors of OW TYLCV. However, for the NW begomoviruses, CuLCrV and SiGMV, B. tabaci MEAM1 seems to a better vector.


Subject(s)
Begomovirus , Hemiptera , Animals , Begomovirus/genetics , Hemiptera/microbiology , In Situ Hybridization, Fluorescence , Plant Diseases/etiology , Plant Diseases/microbiology , United States
17.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34463877

ABSTRACT

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Subject(s)
Mononegavirales , Viruses , Humans
18.
Entropy (Basel) ; 22(11)2020 Nov 09.
Article in English | MEDLINE | ID: mdl-33287037

ABSTRACT

For millennia humans have benefitted from application of the acute canine sense of smell to hunt, track and find targets of importance. In this report, canines were evaluated for their ability to detect the severe exotic phytobacterial arboreal pathogen Xanthomonas citri pv. citri (Xcc), which is the causal agent of Asiatic citrus canker (Acc). Since Xcc causes only local lesions, infections are non-systemic, limiting the use of serological and molecular diagnostic tools for field-level detection. This necessitates reliance on human visual surveys for Acc symptoms, which is highly inefficient at low disease incidence, and thus for early detection. In simulated orchards the overall combined performance metrics for a pair of canines were 0.9856, 0.9974, 0.9257 and 0.9970, for sensitivity, specificity, precision, and accuracy, respectively, with 1-2 s/tree detection time. Detection of trace Xcc infections on commercial packinghouse fruit resulted in 0.7313, 0.9947, 0.8750, and 0.9821 for the same performance metrics across a range of cartons with 0-10% Xcc-infected fruit despite the noisy, hot and potentially distracting environment. In orchards, the sensitivity of canines increased with lesion incidence, whereas the specificity and overall accuracy was >0.99 across all incidence levels; i.e., false positive rates were uniformly low. Canines also alerted to a range of 1-12-week-old infections with equal accuracy. When trained to either Xcc-infected trees or Xcc axenic cultures, canines inherently detected the homologous and heterologous targets, suggesting they can detect Xcc directly rather than only volatiles produced by the host following infection. Canines were able to detect the Xcc scent signature at very low concentrations (10,000× less than 1 bacterial cell per sample), which implies that the scent signature is composed of bacterial cell volatile organic compound constituents or exudates that occur at concentrations many fold that of the bacterial cells. The results imply that canines can be trained as viable early detectors of Xcc and deployed across citrus orchards, packinghouses, and nurseries.

19.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32888050

ABSTRACT

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Subject(s)
Mononegavirales/classification , Terminology as Topic
20.
Arch Virol ; 165(10): 2389-2392, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32699979

ABSTRACT

A novel tobamovirus, brugmansia latent virus (BrLV), was discovered during a study of brugmansia (Brugmansia spp.) in the living collections held at the Royal Botanic Gardens, Kew. Here, we report the complete genome sequence of BrLV, which is 6,397 nucleotides long and contains the four open reading frames (RNA-dependent RNA polymerase, methyltransferase/helicase, movement, and coat proteins) typical of tobamoviruses. The complete genome sequence of BrLV shares 69.7% nucleotide sequence identity with brugmansia mild mottle virus (BrMMV) and 66.7 to 68.7% identity with other tobamoviruses naturally infecting members of the Solanaceae plant family. Phylogenetic analysis of the complete genome nucleotide sequence and the deduced amino acid sequences of the four tobamovirus proteins place BrLV in a subcluster with BrMMV within the Solanaceae-infecting tobamovirus subgroup as a new species.


Subject(s)
Brugmansia/virology , Capsid Proteins/genetics , Genome, Viral , RNA, Viral/genetics , Tobamovirus/genetics , Base Sequence , Conserved Sequence , Methyltransferases/genetics , Open Reading Frames , Phylogeny , Plant Diseases/virology , RNA-Dependent RNA Polymerase/genetics , Sequence Alignment , Tobamovirus/classification , Tobamovirus/isolation & purification , United Kingdom , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...