Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Thorax ; 73(2): 157-166, 2018 02.
Article in English | MEDLINE | ID: mdl-28790179

ABSTRACT

RATIONALE: Primary ciliary dyskinesia is a genetically heterogeneous inherited condition characterised by progressive lung disease arising from abnormal cilia function. Approximately half of patients have situs inversus. The estimated prevalence of primary ciliary dyskinesia in the UK South Asian population is 1:2265. Early, accurate diagnosis is key to implementing appropriate management but clinical diagnostic tests can be equivocal. OBJECTIVES: To determine the importance of genetic screening for primary ciliary dyskinesia in a UK South Asian population with a typical clinical phenotype, where standard testing is inconclusive. METHODS: Next-generation sequencing was used to screen 86 South Asian patients who had a clinical history consistent with primary ciliary dyskinesia. The effect of a CCDC103 p.His154Pro missense variant compared with other dynein arm-associated gene mutations on diagnostic/phenotypic variability was tested. CCDC103 p.His154Pro variant pathogenicity was assessed by oligomerisation assay. RESULTS: Sixteen of 86 (19%) patients carried a homozygous CCDC103 p.His154Pro mutation which was found to disrupt protein oligomerisation. Variable diagnostic test results were obtained including normal nasal nitric oxide levels, normal ciliary beat pattern and frequency and a spectrum of partial and normal dynein arm retention. Fifteen (94%) patients or their sibling(s) had situs inversus suggesting CCDC103 p.His154Pro patients without situs inversus are missed. CONCLUSIONS: The CCDC103 p.His154Pro mutation is more prevalent than previously thought in the South Asian community and causes primary ciliary dyskinesia that can be difficult to diagnose using pathology-based clinical tests. Genetic testing is critical when there is a strong clinical phenotype with inconclusive standard diagnostic tests.


Subject(s)
Asian People/genetics , Kartagener Syndrome/ethnology , Kartagener Syndrome/genetics , Microtubule-Associated Proteins/genetics , Mutation/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Pakistan/ethnology , United Kingdom , Young Adult
2.
Hum Mol Genet ; 27(3): 529-545, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29228333

ABSTRACT

DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer's vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cilia/metabolism , DNA Helicases/metabolism , Microtubule-Associated Proteins/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Animals , Carrier Proteins/genetics , Cilia/physiology , DNA Helicases/genetics , Female , Genotype , HEK293 Cells , Humans , Male , Microtubule-Associated Proteins/genetics , Mutation, Missense/genetics , Pedigree , Phenotype , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Exome Sequencing/methods , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Pediatr Pulmonol ; 40(2): 166-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15965898

ABSTRACT

A 6-year-old Asian girl was diagnosed with cystic fibrosis at 3 months of age, following investigations for failure to thrive. She had intrauterine growth retardation and continued to have restricted postnatal growth, despite adequate caloric intake and enzyme replacement therapy. Further investigations were initiated when she was 5 years old, as her growth was not responding to the usual treatment measures. These tests revealed that she had maternal isodisomy of chromosome 7.


Subject(s)
Chromosomes, Human, Pair 7 , Cystic Fibrosis/genetics , Growth Disorders/genetics , Child , Cystic Fibrosis/complications , Female , Growth Disorders/etiology , Humans , Syndrome , Uniparental Disomy
SELECTION OF CITATIONS
SEARCH DETAIL