Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 23(5): e70011, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223762

ABSTRACT

Food waste is a serious worldwide issue that has an impact on the environment, society, and economy. This comprehensive review provides a detailed description of methods and approaches for reducing food waste, emphasizing the necessity of comprehensive strategies to tackle its intricate relationship with environmental sustainability, social equity, and economic prosperity. By scrutinizing the extent and impact of food waste, from initial production stages to final disposal, this comprehensive review underlines the urgent need for integrated solutions that include technological advancements, behavioral interventions, regulatory frameworks, and collaborative endeavors. Environmental assessments highlight the significant contribution of food waste to greenhouse gas emissions, land degradation, water scarcity, and energy inefficiency, thereby emphasizing the importance of curtailing its environmental impact. Concurrently, the social and economic consequences of food waste, such as food insecurity, economic losses, and disparities in food access, underscore the imperative for coordinated action across multiple sectors. Food waste can also be effectively reduced by various innovative approaches, such as technological waste reduction solutions, supply chain optimization strategies, consumer behavior-focused initiatives, and waste recovery and recycling techniques. Furthermore, in order to foster an environment that encourages the reduction of food waste and facilitates the transition to a circular economy, legislative changes and regulatory actions are essential. By embracing these multifaceted strategies and approaches, stakeholders can unite to confront the global food waste crisis, thereby fostering resilience, sustainability, and social equity within our food systems.


Subject(s)
Recycling , Waste Management , Recycling/methods , Waste Management/methods , Food Supply , Food , Food Loss and Waste
2.
Front Public Health ; 11: 1192542, 2023.
Article in English | MEDLINE | ID: mdl-37575128

ABSTRACT

Background and aims: The recent monkeypox (Mpox) outbreak confirmed by the World Health Organization (WHO) underscores the importance of evaluating the knowledge and attitude of medical students toward emerging diseases, given their potential roles as healthcare professionals and sources of public information during outbreaks. This study aimed to assess medical students' knowledge and attitude about Mpox and to identify factors affecting their level of knowledge and attitude in low-income and high-income countries. Methods: A cross-sectional study was conducted on 11,919 medical students from 27 countries. A newly-developed validated questionnaire was used to collect data on knowledge (14 items), attitude (12 items), and baseline criteria. The relationship between a range of factors with knowledge and attitude was studied using univariate and multivariate analyses. Results: 46% of the study participants were males; 10.7% were in their sixth year; 54.6% knew about smallpox; 84% received the coronavirus disease 2019 (COVID-19) vaccine; and 12.5% had training on Mpox. 55.3% had good knowledge of Mpox and 51.7% had a positive attitude towards it. Medical students in their third, fifth, or sixth year high- income countries who obtained information on Mpox from friends, research articles, social media and scientific websites were positive predictors for good knowledge. Conversely, being male or coming from high-income countries showed a negative relation with good knowledge about Mpox. Additionally, a positive attitude was directly influenced by residing in urban areas, being in the fifth year of medical education, having knowledge about smallpox and a history of receiving the coronavirus disease 2019 (COVID-19) vaccine. Receiving information about Mpox from social media or scientific websites and possessing good knowledge about Mpox were also predictors of a positive attitude. On the other hand, being male, employed, or receiving a training program about Mpox were inversely predicting positive attitude about Mpox. Conclusion: There were differences in knowledge and attitude towards Mpox between medical students in low and high-income countries, emphasizing the need for incorporating epidemiology of re-emerging diseases like Mpox into the medical curriculum to improve disease prevention and control.


Subject(s)
COVID-19 , Mpox (monkeypox) , Smallpox , Students, Medical , Humans , Male , Female , Cross-Sectional Studies , COVID-19/epidemiology , COVID-19 Vaccines
3.
Food Technol Biotechnol ; 59(3): 360-375, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34759767

ABSTRACT

RESEARCH BACKGROUND: Cardiovascular diseases and diabetes are the biggest causes of death globally. Bioactive peptides derived from many food proteins using enzymatic proteolysis and food processing have a positive impact on the prevention of these diseases. The bioactivity of Chinese pond turtle muscle proteins and their enzymatic hydrolysates has not received much attention, thus this study aims to investigate their antioxidant, antidiabetic and cytotoxic activities. EXPERIMENTAL APPROACH: Chinese pond turtle muscles were hydrolysed using four proteolytic enzymes (Alcalase, Flavourzyme, trypsin and bromelain) and the degrees of hydrolysis were measured. High-performance liquid chromatography (HPLC) was conducted to explore the amino acid profiles and molecular mass distribution of the hydrolysates. The antioxidant activities were evaluated using various in vitro tests, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radical scavenging activity, reducing capacity, chelating Fe2+ and lipid peroxide inhibition activity. Antidiabetic activity was evaluated using α-amylase inhibition and α-glucosidase inhibition assays. Besides, cytotoxic effect of hydrolysates on human colon cancer (HT-29) cells was assessed. RESULTS AND CONCLUSIONS: The amino acid composition of the hydrolysates revealed higher mass fractions of glutamic, aspartic, lysine, hydroxyproline and hydrophobic amino acids. Significantly highest inhibition of lipid peroxidation was achieved when hydrolysate obtained with Alcalase was used. Protein hydrolysate produced with Flavourzyme had the highest radical scavenging activity measured by DPPH (68.32%), ABTS (74.12%) and FRAP (A 700 nm=0.300) assays, α-glucosidase (61.80%) inhibition and cytotoxic effect (82.26%) on HT-29 cell line at 550 µg/mL. Hydrolysates obtained with trypsin and bromelain had significantly highest (p<0.05) hydroxyl radical scavenging (92.70%) and Fe2+ metal chelating (63.29%) activities, respectively. The highest α-amylase (76.89%) inhibition was recorded when using hydrolysates obtained with bromelain and Flavourzyme. NOVELTY AND SCIENTIFIC CONTRIBUTION: Enzymatic hydrolysates of Chinese pond turtle muscle protein had high antioxidant, cytotoxic and antidiabetic activities. The findings of this study indicated that the bioactive hydrolysates or peptides from Chinese pond turtle muscle protein can be potential ingredients in pharmaceuticals and functional food formulations.

4.
Food Sci Nutr ; 9(8): 4031-4047, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34401055

ABSTRACT

Grass turtle muscle was hydrolyzed with papain enzyme to produce protein hydrolysate (PH) and the degree of hydrolysis (DH) was determined. Under optimal conditions, the highest DH was 19.52% and the yield was recorded as 17.26%. Protein content of the hydrolysates was ranged from 73.35% to 76.63%. Total amino acids were more than 96.77% for each PH. The PH obtained at DH 19.52% achieved excellent solubility and emulsifying activity which were 95.56% and 108.76 m2/g, respectively at pH 6. Foam capacity amounted 100% in PH of DH 19.52% at pH 2, and water-holding capacity was 4.38 g/g. The antioxidant activity showed the strongest hydroxyl radical scavenging activity (95.25%), ABTS (84.88%), DPPH (75.89%), iron chelating (63.25%), and cupper chelating (66.90%) at DH 11.96%, whereas reducing power (0.88) at DH 19.52%. Thus, the findings indicated that utilization of grass turtle muscle protein hydrolysate is a potential alternative protein resource to improve the nutritional and functional properties in food ingredients and product formulations.

5.
J Agric Food Chem ; 66(35): 9269-9281, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30110537

ABSTRACT

Boronate affinity materials have been widely used for enrichment of cis-diol molecules. In this work, phenylboronic acid functionalized adsorbents were prepared via a simple and efficient procedure grafting phenylboronic acid groups onto amino macroporous resins. Elemental analysis has confirmed the successful functionalization of AR-1M and AR-2M with approximately 2.17% and 0.73% weight percentage of boron. Comparatively, AR-1M possessed higher lactulose adsorption capacity ( qe-Lu, 84.78 ± 0.95 mg/g dry resin) under neutral conditions (pH = 7), while the introduced glutaraldehyde spacer arms on AR-2M resulted in excellent adsorption selectivity (α ≈ 23), high adsorption efficiency (π ≈ 22%), and fast adsorption/desorption rate. The purity of lactulose (PuDLu) through pH-driven adsorption (pH 7-8) and desorption (pH 1.5) can be effectively improved depending on the ratio of lactulose to lactose. When lactulose/lactose ≥ 1:1, PuDLu ≈ 95% was achieved. No significant drop in qe-Lu (>90%) was observed after ten-consecutive repeats. Results demonstrated that the newly developed method may achieve satisfactory performance in lactulose purification.


Subject(s)
Boronic Acids/chemistry , Lactulose/chemistry , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lactose/chemistry
6.
J Agric Food Chem ; 66(29): 7712-7721, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-29978693

ABSTRACT

High-efficiency lactulose-producing enzyme of Caldicellulosiruptor saccharolyticus cellobiose 2-epimerase (WT- CsCE) was immobilized in the form of cross-linked enzyme aggregates (CLEAs). Conditions for enzyme aggregation and cross-linking were optimized, and a sugar-assisted strategy with less damage to enzyme secondary structures was developed to improve the activity yield of CLEAs up to approximately 65%. The resulting CLEAs with multiple-layer network structures exhibited an enlarged optimal temperature range (70-80 °C) and maintained higher activity at 50-90 °C. Besides, CLEAs retained more than 95% of their initial activity after 10 successive batches at 60 °C, demonstrating superior reusability. Moreover, CLEAs displayed an equivalent or higher catalytic ability to free WT- CsCE in lactulose biosynthesis, and the final sugar ratios were similar, lactulose 58.8-61.7%, epilactose 9.3-10.2%, and lactose 27.8-30%, with a constant isomerization selectivity of 0.84-0.87 regardless of enzymes used and temperature applied. The proposed strategy is the first trial for enzymatic synthesis of lactulose catalyzed by CLEAs of WT- CsCE.


Subject(s)
Bacterial Proteins/chemistry , Firmicutes/enzymology , Racemases and Epimerases/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Cellobiose/metabolism , Cross-Linking Reagents/chemistry , Disaccharides/chemistry , Enzyme Stability , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Firmicutes/chemistry , Firmicutes/genetics , Hot Temperature , Isomerism , Lactose/chemistry , Lactulose/chemistry , Racemases and Epimerases/metabolism
7.
J Agric Food Chem ; 66(19): 4872-4882, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29667406

ABSTRACT

Inhibition of α-amylase enzyme is one therapeutic approach in lowering glucose level in the blood to manage diabetes mellitus. In this study α-amylase inhibitory peptides were identified from proteolytic enzymes hydrolysates of red seaweed laver ( Porphyra species) using consecutive chromatographic techniques. In the resultant fractions from RP-HPLC (D1-10), D2 inhibited α-amylase activity (88.67 ± 1.05%) significantly ( p ≤ 0.5) at 1 mg/mL protein concentration. A mass spectrometry (ESI-Q-TOF- MS) analysis was used to identify peptides from this fraction. Two novel peptides were identified as Gly-Gly-Ser-Lys and Glu-Leu-Ser. To validate their α-amylase inhibitory activity, these peptides were synthesized chemically. The peptides were demonstrated inhibitory activity at IC50 value: 2.58 ± 0.08 mM (Gly-Gly-Ser-Lys) and 2.62 ± 0.05 mM (Glu-Leu-Ser). The inhibitory kinetics revealed that these peptides exhibited noncompetitive binding mode. Thus, laver can be a potential source of novel ingredients in food and pharmaceuticals in diabetes mellitus management.


Subject(s)
Enzyme Inhibitors/chemistry , Peptides/chemistry , Porphyra/chemistry , Seaweed/chemistry , alpha-Amylases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Enzyme Inhibitors/isolation & purification , Mass Spectrometry , Peptide Mapping , Peptides/isolation & purification , Plant Proteins/chemistry , Protein Hydrolysates/chemistry , alpha-Amylases/chemistry
8.
J Sci Food Agric ; 98(14): 5352-5360, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29660110

ABSTRACT

BACKGROUND: Lactulose, a valuable lactose-originated 'bifidus factor' product, is exclusively produced by chemical-based isomerization commercially. A complexing agent of sodium aluminate exhibiting high conversion efficiency and strong recyclable stability is more practical for industrial applications. In this study, efficient purification of high-purity lactulose through recycling of sodium aluminate and further desalination by nanofiltration (NF) was implemented on a pilot scale. RESULTS: Over 99.5% of the catalyst was prior recycled in the form of Al(OH)3 precipitate by pH-induced precipitation and centrifugation; residual aluminum was further absorbed by ion exchange resin to an acceptable level (≤10 mg kg-1 ). Subsequently, impurities (monosaccharides and NaCl) were ideally separated from lactulose syrup by NF based on their significant retention differences (lactulose 94.8-97.2% > lactose 86.2-93.5% > monosaccharides 36.3-48.7% > NaCl 9.5-31.1%). High-purity (>95%) lactulose was obtained with >90% yield in both constant and variable volume diafiltration (CVD and VVD) modes when the volume dilution ratio (Vc /Vf ) was 4.0 and 2.5 respectively. Both experimental and predicted results showed that the VVD mode was more water-saving in practice. CONCLUSION: This is the first trial purification of lactulose syrup from chemical isomerization of lactose catalyzed by sodium aluminate, and the applied methodology is a promising industrial-scale purification strategy. © 2018 Society of Chemical Industry.


Subject(s)
Aluminum Compounds/chemistry , Filtration/methods , Lactulose/isolation & purification , Nanotechnology/methods , Sodium Compounds/chemistry , Catalysis , Isomerism , Lactose/chemistry , Lactulose/chemistry , Pilot Projects
9.
J Food Sci ; 83(1): 6-16, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29227526

ABSTRACT

Cardiovascular diseases and diabetes are the biggest causes of death globally. Therefore, prevention of these diseases is a focus of pharmaceuticals and functional food manufacturers. This review summarizes recent research trends and scientific knowledge in seaweed protein-derived peptides with particular emphasis on production, isolation and potential health impacts in prevention of hypertension, diabetes and oxidative stress. The current status and future prospects of bioactive peptides are also discussed. Bioactive peptides have strong potential for use in therapeutic drug and functional food formulation in health management strategy, especially cardiovascular disease and diabetes. Seaweeds can be used as sustainable protein sources in the production of these peptide-based drugs and functional foods for preventing such diseases. Many studies have reported that peptides showing angiotensin converting enzyme inhibition, antihypertensive, antioxidative and antidiabetics activities, have been successfully isolated from seaweed. However, further research is needed in large-scale production of these peptides, efficient isolation methods, interactions with functional foods and other pharmaceuticals, and their ease to digestion in in vivo studies and safety to validate the health benefits of these peptides.


Subject(s)
Antihypertensive Agents , Antioxidants , Hypoglycemic Agents , Peptides/isolation & purification , Peptides/therapeutic use , Seaweed/chemistry , Amino Acid Sequence , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antihypertensive Agents/therapeutic use , Antioxidants/therapeutic use , Cardiovascular Diseases/prevention & control , Diabetes Mellitus/prevention & control , Functional Food , Humans , Hypertension/prevention & control , Hypoglycemic Agents/therapeutic use , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL