Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Cell Biol ; 32(7): 565-573, 2022 07.
Article in English | MEDLINE | ID: mdl-35168846

ABSTRACT

Given the biochemical reaction stochasticity, the mechanisms leading to conservation of biological functions from noise are obscure. Pervasive transcription of nonconserved genomic regions generates lowly expressed cancer-specific long noncoding RNAs (lncRNAs). How such poorly expressed transcripts, often undetectable in normal tissues, consistently modulate the activity of multiple abundant proteins leading to cancer phenotypes is unclear. Biochemical reaction compartmentalisation in response to environmental oscillations through liquid-liquid phase separation (LLPS) may explain the emergence of order from molecular noise. LncRNAs contain repetitive sequences and as such contribute to molecular crowding and LLPS. We propose that lncRNAs mediate cancer stress signals by regulating aberrant LLPS. This emerging model and its consequences for stoichiometry and specificity may lead to the development of diagnostic tools and cancer-specific drugs.


Subject(s)
Neoplasms , RNA, Long Noncoding , Genome , Humans , Neoplasms/genetics , Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
2.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34287642

ABSTRACT

The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Mitochondrial Ribosomes/drug effects , Aged , Animals , Cell Line, Tumor , Doxycycline/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Male , Melanoma/genetics , Melanoma/mortality , Mice, Inbred C57BL , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Stress, Physiological/drug effects , Tigecycline/pharmacology , Uveal Neoplasms/drug therapy , Uveal Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL