Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Gut ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777571

ABSTRACT

BACKGROUND: Metabolic disorders and inflammatory bowel diseases (IBD) have captured the globe during Westernisation of lifestyle and related dietary habits over the last decades. Both disease entities are characterised by complex and heterogeneous clinical spectra linked to distinct symptoms and organ systems which, on a first glimpse, do not have many commonalities in clinical practice. However, experimental studies indicate a common backbone of inflammatory mechanisms in metabolic diseases and gut inflammation, and emerging clinical evidence suggests an intricate interplay between metabolic disorders and IBD. OBJECTIVE: We depict parallels of IBD and metabolic diseases, easily overlooked in clinical routine. DESIGN: We provide an overview of the recent literature and discuss implications of metabolic morbidity in patients with IBD for researchers, clinicians and healthcare providers. CONCLUSION: The Western lifestyle and diet and related gut microbial perturbation serve as a fuel for metabolic inflammation in and beyond the gut. Metabolic disorders and the metabolic syndrome increasingly affect patients with IBD, with an expected negative impact for both disease entities and risk for complications. This concept implies that tackling the obesity pandemic exerts beneficial effects beyond metabolic health.

3.
iScience ; 27(3): 109173, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38496294

ABSTRACT

Inflammatory bowel diseases are characterized by the chronic relapsing inflammation of the gastrointestinal tract. While the molecular causality between endoplasmic reticulum (ER) stress and intestinal inflammation is widely accepted, the metabolic consequences of chronic ER stress on the pathophysiology of IBD remain unclear. By using in vitro, in vivo models, and patient datasets, we identified a distinct polarization of the mitochondrial one-carbon metabolism and a fine-tuning of the amino acid uptake in intestinal epithelial cells tailored to support GSH and NADPH metabolism upon ER stress. This metabolic phenotype strongly correlates with IBD severity and therapy response. Mechanistically, we uncover that both chronic ER stress and serine limitation disrupt cGAS-STING signaling, impairing the epithelial response against viral and bacterial infection and fueling experimental enteritis. Consequently, the antioxidant treatment restores STING function and virus control. Collectively, our data highlight the importance of serine metabolism to allow proper cGAS-STING signaling and innate immune responses upon gut inflammation.

5.
Nat Cell Biol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424270

ABSTRACT

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

6.
Trends Cell Biol ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38341347

ABSTRACT

The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.

7.
Expert Rev Clin Immunol ; 20(4): 375-386, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38149354

ABSTRACT

INTRODUCTION: Metabolic-associated liver diseases have emerged pandemically across the globe and are clinically related to metabolic disorders such as obesity and type 2 diabetes. The new nomenclature and definition (i.e. metabolic dysfunction-associated steatotic liver disease - MASLD; metabolic dysfunction-associated steatohepatitis - MASH) reflect the nature of these complex systemic disorders, which are characterized by inflammation, gut dysbiosis and metabolic dysregulation. In this review, we summarize recent advantages in understanding the pathophysiology of MASLD, which we parallel to emerging therapeutic concepts. AREAS COVERED: We summarize the pathophysiologic concepts of MASLD and its transition to MASH and subsequent advanced sequelae of diseases. Furthermore, we highlight how dietary constituents, microbes and associated metabolites, metabolic perturbations, and immune dysregulation fuel lipotoxicity, hepatic inflammation, liver injury, insulin resistance, and systemic inflammation. Deciphering the intricate pathophysiologic processes that contribute to the development and progression of MASLD is essential to develop targeted therapeutic approaches to combat this escalating burden for health-care systems. EXPERT OPINION: The rapidly increasing prevalence of metabolic dysfunction-associated steatotic liver disease challenges health-care systems worldwide. Understanding pathophysiologic traits is crucial to improve the prevention and treatment of this disorder and to slow progression into advanced sequelae such as cirrhosis and hepatocellular carcinoma.


Subject(s)
Diabetes Mellitus, Type 2 , Liver Neoplasms , Humans , Liver Cirrhosis , Disease Progression , Inflammation
8.
JHEP Rep ; 5(11): 100872, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818230

ABSTRACT

Background & Aims: Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods: NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results: NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1ß, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions: NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications: Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.

9.
N Engl J Med ; 389(9): 859-861, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37646685
11.
Hepatol Commun ; 7(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37314752

ABSTRACT

BACKGROUND: HCC is the leading cause of cancer in chronic liver disease. A growing body of experimental mouse models supports the notion that gut-resident and liver-resident microbes control hepatic immune responses and, thereby, crucially contribute to liver tumorigenesis. However, a comprehensive characterization of the intestinal microbiome in fueling the transition from chronic liver disease to HCC in humans is currently missing. METHODS: Here, we profiled the fecal, blood, and liver tissue microbiome of patients with HCC by 16S rRNA sequencing and compared profiles to nonmalignant cirrhotic and noncirrhotic NAFLD patients. RESULTS: We report a distinct bacterial profile, defined from 16S rRNA gene sequences, with reduced α-and ß-diversity in the feces of patients with HCC and cirrhosis compared to NAFLD. Patients with HCC and cirrhosis exhibited an increased proportion of fecal bacterial gene signatures in the blood and liver compared to NAFLD. Differential analysis of the relative abundance of bacterial genera identified an increased abundance of Ruminococcaceae and Bacteroidaceae in blood and liver tissue from both HCC and cirrhosis patients compared to NAFLD. Fecal samples from cirrhosis and HCC patients both showed a reduced abundance for several taxa, including short-chain fatty acid-producing genera, such as Blautia and Agathobacter. Using paired 16S rRNA and transcriptome sequencing, we identified a direct association between gut bacterial genus abundance and host transcriptome response within the liver tissue. CONCLUSIONS: Our study indicates perturbations of the intestinal and liver-resident microbiome as a critical determinant of patients with cirrhosis and HCC.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Liver Cirrhosis
12.
Hepatology ; 78(5): 1581-1601, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37057876

ABSTRACT

Inflammation is a hallmark of progressive liver diseases such as chronic viral or immune-mediated hepatitis, alcohol-associated liver disease, and NAFLD. Preclinical and clinical studies have provided robust evidence that cytokines and related cellular stress sensors in innate and adaptive immunity orchestrate hepatic disease processes. Unresolved inflammation and liver injury result in hepatic scarring, fibrosis, and cirrhosis, which may culminate in HCC. Liver diseases are accompanied by gut dysbiosis and a bloom of pathobionts, fueling hepatic inflammation. Anti-inflammatory strategies are extensively used to treat human immune-mediated conditions beyond the liver, while evidence for immunomodulatory therapies and cell therapy-based strategies in liver diseases is only emerging. The development and establishment of novel immunomodulatory therapies for chronic liver diseases has been dampened by several clinical challenges, such as invasive monitoring of therapeutic efficacy with liver biopsy in clinical trials and risk of DILI in several studies. Such aspects prevented advancements of novel medical therapies for chronic inflammatory liver diseases. New concepts modulating the liver immune environment are studied and eagerly awaited to improve the management of chronic liver diseases in the future.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Liver/pathology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/pathology , Inflammation/pathology , Fibrosis , Tumor Microenvironment
14.
Gut ; 72(1): 168-179, 2023 01.
Article in English | MEDLINE | ID: mdl-35365572

ABSTRACT

OBJECTIVE: Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN: IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS: IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION: Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.


Subject(s)
Hepatitis, Alcoholic , Liver Diseases, Alcoholic , Humans , Mice , Animals , Interleukin-11/metabolism , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Hepatitis, Alcoholic/metabolism , Ethanol/toxicity , Ethanol/metabolism , Hepatocytes/metabolism , Inflammation/metabolism , Liver Cirrhosis/pathology , Mice, Inbred C57BL
15.
Commun Biol ; 5(1): 1391, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539532

ABSTRACT

Many human diseases, including cancer, share an inflammatory component but the molecular underpinnings remain incompletely understood. We report that physiological and pathological Dickkopf1 (DKK1) activity fuels inflammatory cytokine responses in cell models, mice and humans. DKK1 maintains the elevated inflammatory tone of cancer cells and is required for mounting cytokine responses following ligation of toll-like and cytokine receptors. DKK1-controlled inflammation derives from cell-autonomous mechanisms, which involve SOCS3-restricted, nuclear RelA (p65) activity. We translate these findings to humans by showing that genetic DKK1 variants are linked to elevated cytokine production across healthy populations. Finally, we find that genetic deletion of DKK1 but not pharmacological neutralization of soluble DKK1 ameliorates inflammation and disease trajectories in a mouse model of endotoxemia. Collectively, our study identifies a cell-autonomous function of DKK1 in the control of the inflammatory response, which is conserved between malignant and non-malignant cells. Additional studies are required to mechanistically dissect cellular DKK1 trafficking and signaling pathways.


Subject(s)
Cytokines , Intercellular Signaling Peptides and Proteins , Humans , Animals , Mice , Intercellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Signal Transduction , Inflammation/genetics
16.
Nat Metab ; 4(10): 1221-1222, 2022 10.
Article in English | MEDLINE | ID: mdl-36253616
17.
Cell Metab ; 34(11): 1700-1718, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36208625

ABSTRACT

Bidirectional crosstalk along the gut-liver axis controls gastrointestinal health and disease and exploits environmental and host mediators. Nutrients, microbial antigens, metabolites, and bile acids regulate metabolism and immune responses in the gut and liver, which reciprocally shape microbial community structure and function. Perturbation of such host-microbe interactions is observed in a variety of experimental liver diseases and is facilitated by an impaired intestinal barrier, which is fueling hepatic inflammation and disease progression. Clinical evidence describes perturbation of the gut-liver crosstalk in non-alcoholic fatty liver disease, alcoholic liver disease, and primary sclerosing cholangitis. In liver cirrhosis, a common sequela of these diseases, the intestinal microbiota and microbial pathogen-associated molecular patterns constitute liver inflammation and clinical complications, such as hepatic encephalopathy. Understanding the intricate metabolic interplay between the gut and liver in health and disease opens an avenue for targeted therapies in the future, which is probed in controlled clinical trials.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Humans , Liver/metabolism , Gastrointestinal Microbiome/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver Cirrhosis/metabolism , Inflammation/metabolism
18.
Gut ; 71(12): 2574-2586, 2022 12.
Article in English | MEDLINE | ID: mdl-36113981

ABSTRACT

The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.


Subject(s)
Crohn Disease , Inflammatory Bowel Diseases , Adult , Humans , Child , Inflammatory Bowel Diseases/therapy , Diet , Dysbiosis , Inflammation
19.
Gut Microbes ; 14(1): 2089006, 2022.
Article in English | MEDLINE | ID: mdl-35786161

ABSTRACT

Alcohol-related liver disease (ALD) is a major cause of liver disease and represents a global burden, as treatment options are scarce. Whereas 90% of ethanol abusers develop alcoholic fatty liver disease (AFLD), only a minority evolves to steatohepatitis and cirrhosis. Alcohol increases lipogenesis and suppresses lipid-oxidation implying steatosis, although the key role of intestinal barrier integrity and microbiota in ALD has recently emerged. Bacteroides thetaiotaomicron (Bt) is a prominent member of human and murine intestinal microbiota, and plays important functions in metabolism, gut immunity, and mucosal barrier. We aimed to investigate the role of Bt in the genesis of ethanol-induced liver steatosis. Bt DNA was measured in feces of wild-type mice receiving a Lieber-DeCarli diet supplemented with an increase in alcohol concentration. In a second step, ethanol-fed mice were orally treated with living Bt, followed by analysis of intestinal homeostasis and histological and biochemical alterations in the liver. Alcohol feeding reduced Bt abundance, which was preserved by Bt oral supplementation. Bt-treated mice displayed lower hepatic steatosis and triglyceride content. Bt restored mucosal barrier and reduced LPS translocation by enhancing mucus thickness and production of Mucin2. Furthermore, Bt up-regulated Glucagon-like peptide-1 (GLP-1) expression and restored ethanol-induced Fibroblast growth factor 15 (FGF15) down-regulation. Lipid metabolism was consequently affected as Bt administration reduced fatty acid synthesis (FA) and improved FA oxidation and lipid exportation. Moreover, treatment with Bt preserved the mitochondrial fitness and redox state in alcohol-fed mice. In conclusion, recovery of ethanol-induced Bt depletion by oral supplementation was associated with restored intestinal homeostasis and ameliorated experimental ALD. Bt could serve as a novel probiotic to treat ALD in the future.


Subject(s)
Bacteroides thetaiotaomicron , Fatty Liver , Gastrointestinal Microbiome , Liver Diseases , Animals , Ethanol/toxicity , Mice , Triglycerides
20.
Nat Commun ; 13(1): 4075, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835905

ABSTRACT

Th17 cells are key drivers of autoimmune disease. However, the signaling pathways regulating Th17 polarization are poorly understood. Hedgehog signaling regulates cell fate decisions during embryogenesis and adult tissue patterning. Here we find that cell-autonomous Hedgehog signaling, independent of exogenous ligands, selectively drives the polarization of Th17 cells but not other T helper cell subsets. We show that endogenous Hedgehog ligand, Ihh, signals to activate both canonical and non-canonical Hedgehog pathways through Gli3 and AMPK. We demonstrate that Hedgehog pathway inhibition with either the clinically-approved small molecule inhibitor vismodegib or genetic ablation of Ihh in CD4+ T cells greatly diminishes disease severity in two mouse models of intestinal inflammation. We confirm that Hedgehog pathway expression is upregulated in tissue from human ulcerative colitis patients and correlates with Th17 marker expression. This work implicates Hedgehog signaling in Th17 polarization and intestinal immunopathology and indicates the potential therapeutic use of Hedgehog inhibitors in the treatment of inflammatory bowel disease.


Subject(s)
Colitis, Ulcerative , Th17 Cells , Adult , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Mice , Signal Transduction , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...