Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters











Publication year range
1.
Nat Prod Res ; : 1-5, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38400522

ABSTRACT

Phytochemical investigation of the trunks from Gnetum latifolium led to the isolation of a novel phenolic glucoside, 2E-2,4-di-(3,4-dihydroxyphenyl)but-2-en-1-yl-O-ß-D-glucopyranoside (1), along with five known stilbene derivatives (2-6). Their structures were determined mainly using high-resolution electrospray ionisation mass spectrometry and nuclear magnetic resonance spectroscopic analyses, followed by comparisons of observed spectral data with reported values. The novel compound 1 in G. latifolium was found to be useful as a chemotaxonomic marker. Biological evaluation revealed that compound 6 had remarkable inhibitory effects on nitric oxide production, with a half-maximal inhibitory concentration (IC50) value of 4.85 ± 0.20 µM, which was much higher than that of the positive control dexamethasone (IC50 = 14.20 ± 0.54 µM).

2.
Chem Biodivers ; 20(10): e202301166, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591796

ABSTRACT

Gnetum latifolium var. funiculare Markgr. is a medicinal plant and widely distributed in mountainous areas of Vietnam. Phytochemical investigation on the trunks of this plant afforded eight stilbene derivatives (1-8) including for new compounds (1-4). Their structures were determined based on extensive analyses of HR-ESI-MS, 1D and 2D NMR spectra. Among the isolates, compounds 1-3 showed moderate NO production inhibition in LPS-activated RAW264.7 cells with the IC50 values ranging from 46.81 to 68.10 µM, compounds 4 and 6 showed weak effects with the IC50 values of 96.57 and 79.46 µM, respectively, compared to that of the positive control compound, dexamethasone (IC50 14.20 µM).

3.
Pharm Biol ; 61(1): 639-646, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37067190

ABSTRACT

Context: Bergamot, mainly produced in the Ionian coastal areas of Southern Italy (Calabria), has been used since 1700 for its balsamic and medicinal properties. Phytochemical profiling has confirmed that bergamot juices are rich in flavonoids, including flavone and flavanone glycosides which are responsible for its beneficial effects.Objective: Recently, it was shown that the combination of natural compounds with conventional treatments improves the efficacy of anticancer therapies. Natural compounds with anticancer properties attack cancerous cells without being toxic to healthy cells. Bergamot can induce cytotoxic and apoptotic effects and prevent cell proliferation in various cancer cells.Methods: In this review, the antiproliferative, pro-apoptotic, anti-inflammatory, and antioxidant effects of bergamot are described. Information was compiled from databases such as PubMed, Web of Science, and Google Scholar using the key words 'bergamot' accompanied by 'inflammation' and, 'cancer' for data published from 2015-2021.Results: In vitro and in vivo studies provided evidence that different forms of bergamot (extract, juice, essential oil, and polyphenolic fraction) can affect several mechanisms that lead to anti-proliferative and pro-apoptotic effects that decrease cell growth, as well as anti-inflammatory and antioxidant effects.Conclusions: Considering the effects of bergamot and its new formulations, we affirm the importance of its rational use in humans and illustrate how bergamot can be utilized in clinical applications. Numerous studies evaluated the effect of new bergamot formulations that can affect the absorption and, therefore, the final effects by altering the therapeutic profile of bergamot and enhancing the scientific knowledge of bergamot.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents , Antioxidants , Biological Products , Citrus , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Proliferation , Fruit and Vegetable Juices , Humans
4.
Z Naturforsch C J Biosci ; 78(1-2): 65-72, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36321958

ABSTRACT

Three sesquiterpene lactones (1-3) were isolated from the aerial part of Tithonia diversifolia (Hemsl.) A. Gray grown in the Hoa Binh province in Viet Nam. The structures of these three sesquiterpene lactones were identified as tagitinin A (1), 1ß-hydroxytirotundin 3-O-methyl ether (2), and tagitinin C (3) by analyzing spectroscopic data. For the first time, compound 2 was isolated from T. diversifolia growing in Viet Nam. Furthermore, contrary to existing literature, we determined that compound 1 was the major isolate. Compounds 1 and 3 significantly decreased numbers of acute myeloid leukemia OCI-AML3 cells by promoting apoptosis and causing cell cycle arrest at G0/G1 phase at concentrations as low as 2.5 µg/mL (compound 1) and 0.25 µg/mL (compound 3). Additionally, all three compounds showed cytotoxic activity against five human cancer cell lines (A549, T24, Huh-7, 8505, and SNU-1), with IC50 values ranging from 1.32 ± 0.14 to 46.34 ± 2.74 µM. Overall, our findings suggest that compounds 1 and 3 may be potential anti-cancer therapeutics and thus warrant further study.


Subject(s)
Asteraceae , Leukemia, Myeloid, Acute , Sesquiterpenes , Humans , Tithonia , Asteraceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis , Leukemia, Myeloid, Acute/drug therapy , Cell Division , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry
5.
Biochem Pharmacol ; 198: 114930, 2022 04.
Article in English | MEDLINE | ID: mdl-35149054

ABSTRACT

Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer (NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells are critical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in the blood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary adrenal axis. A self-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenous stimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger the hypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids. Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, and cancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among these effects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases (e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).


Subject(s)
Autoimmune Diseases , Glucocorticoids , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Hypothalamo-Hypophyseal System , Inflammation , Killer Cells, Natural , Pituitary-Adrenal System
6.
Molecules ; 27(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011527

ABSTRACT

Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Endophytes/chemistry , Fungi/chemistry , Animals , Antineoplastic Agents/isolation & purification , Biological Products/isolation & purification , Clinical Studies as Topic , Drug Discovery/methods , Drug Evaluation, Preclinical , Endophytes/metabolism , Fungi/metabolism , Humans , Plants/microbiology , Structure-Activity Relationship
7.
Cells ; 10(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34571982

ABSTRACT

Programmed cell death protein 1 (PD-1) and its ligands, PD-L1/2, control T cell activation and tolerance. While PD-1 expression is induced upon T cell receptor (TCR) activation or cytokine signaling, PD-L1 is expressed on B cells, antigen presenting cells, and on non-immune tissues, including cancer cells. Importantly, PD-L1 binding inhibits T cell activation. Therefore, the modulation of PD-1/PD-L1 expression on immune cells, both circulating or in a tumor microenvironment and/or on the tumor cell surface, is one mechanism of cancer immune evasion. Therapies that target PD-1/PD-L1, blocking the T cell-cancer cell interaction, have been successful in patients with various types of cancer. Glucocorticoids (GCs) are often administered to manage the side effects of chemo- or immuno-therapy, exerting a wide range of immunosuppressive and anti-inflammatory effects. However, GCs may also have tumor-promoting effects, interfering with therapy. In this review, we examine GC signaling and how it intersects with PD-1/PD-L1 pathways, including a discussion on the potential for GC- and PD-1/PD-L1-targeted therapies to "confuse" the immune system, leading to a cancer cell advantage that counteracts anti-cancer immunotherapy. Therefore, combination therapies should be utilized with an awareness of the potential for opposing effects on the immune system.


Subject(s)
Glucocorticoids/metabolism , Immune System/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Glucocorticoids/immunology , Humans , Immunotherapy/methods , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology
8.
Molecules ; 26(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34361576

ABSTRACT

Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.


Subject(s)
Bacteria/drug effects , Colon/drug effects , Neuroprotection , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Colitis, Ulcerative/drug therapy , Cytokines/genetics , Cytokines/metabolism , Dopamine/metabolism , Fruit/chemistry , Gene Expression Regulation/drug effects , HCT116 Cells , Humans , Inflammation/drug therapy , Male , Mice , Plant Extracts/chemistry , Prunus/chemistry , Serine Endopeptidases/metabolism
9.
Antibiotics (Basel) ; 10(3)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809983

ABSTRACT

Industrial hemp is characterized by a huge amount of by-products, such as inflorescences, that may represent high-quality sources of biomolecules with pharmaceutical interest. In the present study, we have evaluated the phytochemical profile, including terpene and terpenophenolic compounds, of the essential oils (EOs) of Futura 75, Carmagnola selezionata and Eletta campana hemp varieties. The EOs were also tested for antifungal properties toward Trichophyton mentagrophytes, Trichophyton rubrum, Arthroderma crocatum, Arthroderma quadrifidum, Arthroderma gypseum, Arthroderma curreyi, and Arthroderma insingulare. In parallel, we investigated the inhibitory effects of the EOs against tyrosinase, and the production of prostaglandin E2 in isolated mouse skin exposed to hydrogen peroxide. In human H1299 lung adenocarcinoma cells, we also evaluated the influence of the EOs on the gene expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2), which are involved in SARS-CoV-2 entry in human host. E-caryophyllene and α-pinene were the prominent terpenes in the EOs, whereas the cannabidiolic acid was the terpenophenol present at higher concentration. The EOs inhibited the growth of all tested dermatophytes species. In isolated skin specimens, EOs prevented the hydrogen-peroxide-induced synthesis of prostaglandin E2, consistent with the intrinsic antityrosinase activity. Finally, in H1299 cells, all tested EOs reduced the gene expression of ACE-2 and TMPRSS2, as well. Therefore, the present findings highlight the rationale for the use of the present EOs against infectious diseases.

10.
Nat Prod Res ; 35(22): 4685-4689, 2021 Nov.
Article in English | MEDLINE | ID: mdl-31872777

ABSTRACT

Previously, we isolated four known diterpenoids, trans-communic acid (1), 13-oxo-15,16-dinor-labda-8(17), 11E-diene-19-oic acid (2), 3ß-hydroxytotarol (3), and totarolone (4) from Fokienia hodginsii leaves. Further study demonstrated the antiproliferative activity of all four compounds in acute myeloid leukemia (OCI-AML) cells due to impaired cell cycle progression. Interestingly, 3ß-hydroxytotarol (3) had very powerful bioactivity at low concentrations (5 µg/mL).


Subject(s)
Diterpenes , Leukemia, Myeloid, Acute , Diterpenes/pharmacology , Humans , Leukemia, Myeloid, Acute/drug therapy , Plant Leaves
11.
J Transl Autoimmun ; 3: 100035, 2020.
Article in English | MEDLINE | ID: mdl-32803151

ABSTRACT

Glucocorticoids promote thymocyte apoptosis and modulate transcription of numerous regulators of thymic apoptosis. Among these, glucocorticoid-induced leucine zipper (GILZ) is strongly upregulated in the thymus. We have previously demonstrated that GILZ decreases Bcl-xL expression, activates caspase-8 and caspase-3, and augments apoptosis in mice thymocytes. To better understand the causal links between glucocorticoids, GILZ, Bcl-xL, caspase-8, and caspase-3, we analyzed the thymocytes of Bcl-xL-overexpressing transgenic mice with or without glucocorticoid stimulation in vitro. Overexpression of Bcl-xL inhibited the glucocorticoid-induced up-regulation of GILZ in murine thymocytes as well as the glucocorticoid-dependent activation of caspase-8 and caspase-3. By contrast, no appreciable change in caspase-9 activation was observed upon Bcl-xL overexpression. Thus, these experiments highlighted a novel thymocyte apoptotic pathway in which Bcl-xL overexpression inhibited the glucocorticoid-induced activation of caspase-8 and caspase-3, but not caspase-9, as well as the accumulation of GILZ protein. These findings, together with our previous results showing that caspase-8 protects GILZ from proteasomal degradation, suggest the presence of a glucocorticoid-induced apoptosis self-amplification loop in which GILZ decreases Bcl-xL expression with a subsequent activation of caspase-8 and caspase-3; caspase-8 activation then enhances the stability and accumulation of GILZ and ensures the unimpeded and irreversible progression of apoptosis. By contrast, inappropriate increases in Bcl-xL levels could have catastrophic effects on thymic apoptosis as it would shut down caspase-8/3 activation, diminish the expression of GILZ, and impair the fine control necessary for thymic generation of a healthy immune repertoire.

12.
Molecules ; 25(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707961

ABSTRACT

In previous studies, we isolated the known compound saponin XII from the roots of Dipsacus japonicus Miq. Here, we show that this compound reduced the number of acute myeloid leukemia OCI-AML3 cells as evaluated by a hemocytometer. Flow cytometry analyses demonstrated that the reported activity was associated with a significant increase of apoptosis and of cells in the G0/G1 phase of the cell cycle, with a decrease of cells in the S and G2/M phases. Thus, the inhibition of cell growth in OCI-AML3 cells was due to antiproliferative and pro-apoptotic effects. Interestingly, the bioactivity of saponin XII exerted its effect at a concentration as low as 1 µg/mL.


Subject(s)
Antineoplastic Agents/chemistry , Dipsacaceae/chemistry , Growth Inhibitors/chemistry , Leukemia, Myeloid, Acute/drug therapy , Plant Extracts/chemistry , Saponins/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Division/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Growth Inhibitors/pharmacology , Humans , Plant Extracts/pharmacology , Saponins/pharmacology
13.
Molecules ; 25(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32325960

ABSTRACT

Limbarda crithmoides (L.) Dumort (Asteraceae) n-hexane extract displayed high cell proliferation inhibitory activity against acute myeloid leukaemia cells (OCI-AML3) and was therefore subjected to a bioassay-guided multistep separation procedure. Two thymol derivatives, namely 10-acetoxy-8,9-epoxythymol tiglate (1) and 10-acetoxy-9-chloro-8,9-dehydrothymol (2), were isolated and identified by means of NMR spectroscopy. Both of them exhibited a significant dose-dependent inhibition of cell proliferation.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Asteraceae/chemistry , Biological Assay , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Extracts/chemistry
14.
Front Pharmacol ; 11: 593829, 2020.
Article in English | MEDLINE | ID: mdl-33551802

ABSTRACT

Artocarpus tonkinensis (At) leaf decoction, a traditional remedy prepared in North Vietnam by the Hmong ethnic group, is a tea extract rich in bioactive compounds that may have therapeutic effects in arthritis and backache. Indeed, it has been demonstrated that At is able to inhibit Th17 lymphocytes development and to protect mice in an experimental model of collagen-induced arthritis. By resorting to macrophage in vitro models of inflammation and osteoclastogenesis, we showed that At extract significantly reduced nitric oxide synthase 2 (NOS2) activity and IL-6 production by RAW 264.7 murine cells. Moreover, At demonstrated an anti-osteoclastogenic effect, as revealed by complete inhibition of TRAP-positive osteoclast formation and decreased expression of key osteoclast-related genes. This At activity likely relies on the inhibition of RANK downstream signaling pathway, as the activation of non-receptor tyrosine kinase Src is reduced upon RANKL-At exposure. Protective effect of At against bone loss was also enlightened in vivo by collagen-induced arthritis (CIA) experiment demonstrating that, although paw edema was only weakly opposed by drinking At decoction, bone and cartilage were well preserved in CIA+At mice and joint tissue expressed decreased levels of osteoclast marker genes respect to CIA control group. Maesopsin 4-O-ß-D-glucoside (i.e., TAT-2, one of the main decoction bioactive components) was capable to contrast NOS2 activity, IL-6 expression and osteoclast formation, too, albeit to a lesser extent when compared to At decoction. Overall, this study enlightens another At cell target, macrophages, beside Th17 lymphocytes, and suggests that the anti-arthritic beneficial effects of At decoction largely derives from its ability to counteract not only inflammation, but also osteoclastogenesis.

15.
Toxins (Basel) ; 11(9)2019 08 29.
Article in English | MEDLINE | ID: mdl-31470629

ABSTRACT

Cladosporium species are endophytic fungi that grow on organic matter and are considered food contaminants. The anti-microbial and anti-tumor naphthoquinones fusarubin (FUS) and anhydrofusarubin (AFU) were isolated using column chromatography from a Cladosporium species residing inside Rauwolfia leaves. The impact of FUS and AFU on cell growth was assessed in acute myeloid leukemia (OCI-AML3) and other hematologic tumor cell lines (HL-60, U937, and Jurkat). Treatment with FUS or AFU reduced the number of OCI-AML3 cells as evaluated by a hemocytometer. Flow cytometry analyses showed that this effect was accompanied by diverse impairments in cell cycle progression. Specifically, FUS (20 or 10 µg/mL significantly decreased the percentage of cells in S phase and increased the percentage of cells in G2/M phase, whereas AFU increased the percentage of cells in G0/G1 phase (50 and 25 µg/mL) and decreased the percentage of cells in S (50 µg/mL) and G2/M (50 and 25 µg/mL) phases. Both substances significantly increased apoptosis at higher concentrations. The effects of FUS were more potent than those of AFU, with FUS up-regulating p21 expression in a p53-dependent manner, as detected by Western blot analyses, likely the consequence of decreased ERK phosphorylation and increased p38 expression (both of which increase p21 stability). FUS also decreased Akt phosphorylation and resulted in increased Fas ligand production and caspase-8/3-dependent apoptosis. These results suggest that FUS and AFU inhibit proliferation and increase apoptosis in cell lines derived from hematological cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Cladosporium , Naphthoquinones/pharmacology , Animals , Apoptosis/drug effects , Bone Marrow Cells/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Mice, Inbred C57BL , Naphthoquinones/isolation & purification
16.
Front Immunol ; 10: 1823, 2019.
Article in English | MEDLINE | ID: mdl-31440237

ABSTRACT

Glucocorticoid-induced leucine zipper (GILZ) is a protein with multiple biological roles that is upregulated by glucocorticoids (GCs) in both immune and non-immune cells. Importantly, GCs are immunosuppressive primarily due to their regulation of cell signaling pathways that are crucial for immune system activity. GILZ, which is transcriptionally induced by the glucocorticoid receptor (GR), mediates part of these immunosuppressive, and anti-inflammatory effects, thereby controlling immune cell proliferation, survival, and differentiation. The primary immune cells targeted by the immunosuppressive activity of GCs are T cells. Importantly, the effects of GCs on T cells are partially mediated by GILZ. In fact, GILZ regulates T-cell activation, and differentiation by binding and inhibiting factors essential for T-cell function. For example, GILZ associates with nuclear factor-κB (NF-κB), c-Fos, and c-Jun and inhibits NF-κB-, and AP-1-dependent transcription. GILZ also binds Raf and Ras, inhibits activation of Ras/Raf downstream targets, including mitogen-activated protein kinase 1 (MAPK1). In addition GILZ inhibits forkhead box O3 (FoxO3) without physical interaction. GILZ also promotes the activity of regulatory T cells (Tregs) by activating transforming growth factor-ß (TGF-ß) signaling. Ultimately, these actions inhibit T-cell activation and modulate the differentiation of T helper (Th)-1, Th-2, Th-17 cells, thereby mediating the immunosuppressive effects of GCs on T cells. In this mini-review, we discuss how GILZ mediates GC activity on T cells, focusing mainly on the therapeutic potential of this protein as a more targeted anti-inflammatory/immunosuppressive GC therapy.


Subject(s)
Glucocorticoids/immunology , Immune Tolerance , Lymphocyte Activation , Signal Transduction/immunology , T-Lymphocytes/immunology , Transcription Factors/immunology , Animals , Cell Differentiation/immunology , Humans , Receptors, Glucocorticoid/immunology , Transcription, Genetic/immunology
17.
Front Pharmacol ; 10: 503, 2019.
Article in English | MEDLINE | ID: mdl-31214019

ABSTRACT

Artocarpus tonkinensis (Moraceae) is a tree that grows in north Vietnam whose leaf decoction is used as a traditional remedy by the Hmong ethnic group to treat arthritis and backache. Our study evaluated the decoction's efficacy and mechanism of action in DBA/1J mice with collagen-induced arthritis (CIA). Mice treated with the decoction (At) either from the first collagen immunization or after CIA development experienced significantly less joint edema and inflammatory infiltration, whereas CIA-induced cartilage damage could only be prevented by early At treatment. Autoimmune gene expression profiles showed that Th17 cell-associated chemokine CCL20 and cytokines IL-6, IL-17, and IL-22 were strongly downregulated by At. Reduced expression of IL-2, IL-17, IL-22, and FasL in lymph node cells from At-treated mice was further confirmed by real-time PCR. The decoction also inhibited polarization of Th17 cells from CD4+ splenic T cells according to levels of IL-17 and RORC, a Th17 cell-specific transcription factor. Chromatographic analysis identified At's major component as maesopsin-ß-D-glucoside, which could inhibit in vitro differentiation of Th17 cells. The decoction significantly alleviated the signs and symptoms of CIA and inhibited the development and function of Th17 cells, highlighting its potent anti-inflammatory activity.

18.
Nat Prod Res ; 33(23): 3357-3363, 2019 Dec.
Article in English | MEDLINE | ID: mdl-29781313

ABSTRACT

A new diterpene, cassipouryl hexadecanoate (2), in addition to the cassipourol (1) and four terpenes (3-6) were isolated from the twigs and leaves of Dacrycarpus imbricatus (Blume) de Laub. The structures of the two monocyclic diterpenes (1, 2), were elucidated on the basic of 1D and 2D NMR spectroscopic data and compared with the literature. These two monocyclic diterpenes (1, 2) were tested for their anti-proliferative activity on acute myeloid leukemia (OCI-AML) cells. The results showed that 1 had significantly anti-proliferative activity whereas 2 was weakly active.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Tracheophyta/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Leaves/chemistry
19.
Int J Mol Sci ; 19(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486460

ABSTRACT

Although not a disease itself, aging represents a risk factor for many aging-related illnesses, including cancer. Numerous causes underlie the increased incidence of malignancies in the elderly, for example, genomic instability and epigenetic alterations that occur at cellular level, which also involve the immune cells. The progressive decline of the immune system functions that occurs in aging defines immunosenescence, and includes both innate and adaptive immunity; the latter undergoes major alterations. Aging and chronic stress share the abnormal hypothalamic⁻pituitary⁻adrenal axis activation, where altered peripheral glucocorticoids (GC) levels and chronic stress have been associated with accelerated cellular aging, premature immunosenescence, and aging-related diseases. Consequently, changes in GC levels and sensitivity contribute to the signs of immunosenescence, namely fewer naïve T cells, poor immune response to new antigens, decreased cell-mediated immunity, and thymic involution. GC signaling alterations also involve epigenetic alterations in DNA methylation, with transcription modifications that may contribute to immunosenescence. Immune cell aging leads to decreased levels of immunosurveillance, thereby providing tumor cells one more route for immune system escape. Here, the contribution of GC secretion and signaling dysregulation to the increased incidence of tumorigenesis in the elderly is reviewed.


Subject(s)
Glucocorticoids/metabolism , Neoplasms/metabolism , Age Factors , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Genomic Instability , Humans , Immunosenescence/genetics , Neoplasms/genetics , Neoplasms/immunology
20.
Integr Cancer Ther ; 17(1): 138-147, 2018 03.
Article in English | MEDLINE | ID: mdl-29235378

ABSTRACT

Bursera microphylla (BM), one of the common elephant trees, is widely distributed in the Sonoran Desert in Mexico. The Seri ethnic group in the Sonoran Desert uses BM as an anti-inflammatory and painkiller drug for the treatment of sore throat, herpes labialis, abscessed tooth, and wound healing. Dried stems and leaves of BM are used in a tea to relieve painful urination and to stimulate bronchial secretion. Furthermore, BM is used for fighting venereal diseases. To investigate the effects of the hexane fraction of resin methanol extract (BM-H) on cell growth, the acute myeloid cell line (OCI-AML3) was treated with 250, 25, or 2.5 µg/mL of BM-H. The first 2 concentrations were able to significantly decrease OCI-AML3 cell number. This reduced cell number was associated with decreased S-phase, blockade of the G2/M phase of the cell cycle, and increased cell death. Similar results were obtained on all tested tumor cell lines of different origins. We found that blockade of the cell cycle was due to upregulation of p21 protein in a p53-independent way. Increase of p21 was possibly due to upstream upregulation of p-ERK (which stabilizes p21 protein) and downregulation of p-38 (which promotes its degradation). Regarding cell death, activation of caspase-3, but not of caspase-8 or -9, was detectable after BM-H treatment. In conclusion, these data suggest that the BM's hexane fraction inhibited proliferation of cell lines mainly by a p21-dependent, p53-independent mechanism and promoted apoptosis through activation of caspase-3, but not caspase-8 or -9.


Subject(s)
Apoptosis/drug effects , Bursera/chemistry , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Plant Extracts/pharmacology , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , HCT116 Cells , HL-60 Cells , Hexanes/chemistry , Humans , Jurkat Cells , K562 Cells , MCF-7 Cells , Tumor Suppressor Protein p53/metabolism , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL