Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Respir Crit Care Med ; 191(7): 804-19, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25664391

ABSTRACT

RATIONALE: The hallmark of severe influenza virus infection is excessive inflammation of the lungs. Platelets are activated during influenza, but their role in influenza virus pathogenesis and inflammatory responses is unknown. OBJECTIVES: To determine the role of platelets during influenza A virus infections and propose new therapeutics against influenza. METHODS: We used targeted gene deletion approaches and pharmacologic interventions to investigate the role of platelets during influenza virus infection in mice. MEASUREMENTS AND MAIN RESULTS: Lungs of infected mice were massively infiltrated by aggregates of activated platelets. Platelet activation promoted influenza A virus pathogenesis. Activating protease-activated receptor 4, a platelet receptor for thrombin that is crucial for platelet activation, exacerbated influenza-induced acute lung injury and death. In contrast, deficiency in the major platelet receptor glycoprotein IIIa protected mice from death caused by influenza viruses, and treating the mice with a specific glycoprotein IIb/IIIa antagonist, eptifibatide, had the same effect. Interestingly, mice treated with other antiplatelet compounds (antagonists of protease-activated receptor 4, MRS 2179, and clopidogrel) were also protected from severe lung injury and lethal infections induced by several influenza strains. CONCLUSIONS: The intricate relationship between hemostasis and inflammation has major consequences in influenza virus pathogenesis, and antiplatelet drugs might be explored to develop new antiinflammatory treatment against influenza virus infections.


Subject(s)
Influenza, Human/physiopathology , Orthomyxoviridae/pathogenicity , Platelet Activation/physiology , Platelet Aggregation/physiology , Pneumonia/physiopathology , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Disease Models, Animal , Female , Humans , Influenza, Human/complications , Influenza, Human/drug therapy , Influenza, Human/virology , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae/drug effects , Pneumonia/complications , Pneumonia/drug therapy
2.
J Med Chem ; 52(15): 4683-93, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19606904

ABSTRACT

The modulation of protein kinase activities by low molecular weight compounds is a major goal of current pharmaceutical developments. In this line, important efforts are directed to the development of drugs targeting the conserved ATP binding site. However, there is very little experience on targeting allosteric, regulatory sites, different from the ATP binding site, in protein kinases. Here we describe the synthesis, cell-free activation potency, and calorimetric binding analysis of 3,5-diphenylpent-2-enoic acids and derivatives as allosteric modulators of the phosphoinositide-dependent kinase-1 (PDK1) catalytic activity. Our SAR results combined with thermodynamic binding analyses revealed both favorable binding enthalpy and entropy and confirmed the PIF-binding pocket of PDK1 as a druggable site. In conclusion, we defined the minimal structural requirements for compounds to bind to the PIF-binding pocket and to act as allosteric modulators and identified two new lead structures (12Z and 13Z) with predominating binding enthalpy.


Subject(s)
Fatty Acids, Monounsaturated/chemical synthesis , Protein Serine-Threonine Kinases/drug effects , Thermodynamics , Allosteric Site , Calorimetry , Entropy , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Structure-Activity Relationship
3.
EMBO J ; 25(23): 5469-80, 2006 Nov 29.
Article in English | MEDLINE | ID: mdl-17110931

ABSTRACT

Organisms rely heavily on protein phosphorylation to transduce intracellular signals. The phosphorylation of a protein often induces conformational changes, which are responsible for triggering downstream cellular events. Protein kinases are themselves frequently regulated by phosphorylation. Recently, we and others proposed the molecular mechanism by which phosphorylation at a hydrophobic motif (HM) regulates the conformation and activity of many members of the AGC group of protein kinases. Here we have developed specific, low molecular weight compounds, which target the HM/PIF-pocket and have the ability to allosterically activate phosphoinositide-dependent protein kinase 1 (PDK1) by modulating the phosphorylation-dependent conformational transition. The mechanism of action of these compounds was characterized by mutagenesis of PDK1, synthesis of compound analogs, interaction-displacement studies and isothermal titration calorimetry experiments. Our results raise the possibility of developing drugs that target the AGC kinases via a novel mode of action and may inspire future rational development of compounds with the ability to modulate phosphorylation-dependent conformational transitions in other proteins.


Subject(s)
Acetates/pharmacology , Drug Design , Protein Serine-Threonine Kinases/drug effects , 3-Phosphoinositide-Dependent Protein Kinases , Acetates/chemistry , Allosteric Regulation , Amino Acid Motifs , Binding Sites , Cells, Cultured , Enzyme Activation , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Mutation , Phosphopeptides/pharmacology , Phosphorylation , Protein Conformation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...