Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(10): e10908, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247136

ABSTRACT

We assess the adsorption capacity of bamboo and calabash biochar (BB and CB). Using 10-50 mg/L Reactive Violet 5 Azo dye (V5R) adsorbate, the kinetics, and adsorption isotherms are investigated. We pyrolyzed the bamboo, and calabash biomass at 500 °C, washed, and oven dried at 120 °C for 48 h. The Brunauer-Emmett-Teller (BET) method indicates that the BB and CB average pore diameters are 21.1 nm and 26.5 nm, with specific surface areas of 174.67 m2/g and 44.78 m2/g, respectively. The SEM reveals a larger granular shape of the CB having pinholes on the surface, but the BB exhibited interconnected structures like a mesh. The FTIR shows C=C, C=O, O-H, and C-O-C as the predominant functional groups on both BB and CB. The adsorption of V5R on BB and CB follows pseudo-second-order kinetics and favors Langmuir isotherm with maximum adsorption capacities of 5.106 mg/g, and 0.010 mg/g, respectively. The BB adsorbs 70.9-96% V5R, whilst CB adsorbs 0.1-0.2 % only. The results suggest that bamboo biochar has the potential to eliminate 70.9-96% of 10-50 mg/L V5R from an aqueous solution, hence suitable for removing V5R. In this study, we have also presented a prototype expected to eliminate 91.6%-99.8% of the V5R from an aqueous solution.

2.
Nanotechnology ; 29(3): 035605, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29176049

ABSTRACT

We present a liquid phase post synthesis self-assemble protocol that transforms trillions of carbon nanotubes (CNTs) in powder form into densely packed flexible, robust and binder-free macroscopic membranes with a hierarchical pore structure. We employ charge transfer engineering to spontaneously disperse the CNTs in a liquid medium. The processing protocol has limited or no impact on the intrinsic properties of the CNTs. As the thickness of the CNT membrane is increased, we observed a gradual transition from high flexibility to buckling and brittleness in the flexural properties of the membranes. The binder-free CNT membranes have bulk mass density greater than that of water (1.0 g cm-3). We correlate the mass of the CNTs in the membrane to the thickness of the membrane and obtained a bulk mass density of ∼1.11 g cm-3 ± 0.03 g cm-3. We demonstrate the use of the CNT membranes as electrode in a pristine and oxidized single/stacked solid-state capacitor as well as pristine interdigitated microcapacitor that show time constant of ∼32 ms with no degradation in performance even after 10 000 cycles. The capacitors show very good temperature dependence over a wide range of temperatures with good cycling performance up to 90 °C. The specific capacitance of the pseudocapacitive CNT electrode at room temperature was 72 F g-1 and increased to 100 F g-1 at 70 °C. The leakage current of bipolar stacked solid state capacitor was ∼100 nA cm-2 at 2.5 V when held for 72 h.

3.
Langmuir ; 25(1): 582-8, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19053625

ABSTRACT

The response of two carbide derived carbons (CDCs) films to NH(3), N(2)O, and room air is investigated by four probe resistance at room temperature and pressures up to 760 Torr. The two CDC films were synthesized at 600 (CDC-600) and 1000 degrees C (CDC-1000) to vary the carbon morphology from completely amorphous to more ordered, and determine the role of structure, surface area, and porosity on sensor response. Sensor response time followed kinetic diameter and indicated a more ordered carbon structure slowed response due to increased tortuosity caused by the formation of graphitic layers at the particle fringe. Steady state sensor response was greater for the less-ordered material, despite its decreased surface area, decreased micropore volume, and less favorable surface chemistry, suggesting carbon structure is a stronger predictor of sensor response than surface chemistry. The lack of correlation between adsorption of the probe gases and sensor response suggests chemical interaction (charge transfer) drive sensor response within the material; N(2)O response, in particular, did not follow simple adsorption behavior. Based on Raman and FTIR characterization, carbon morphology (disorder) appeared to be the determining factor in overall sensor response, likely due to increased charge transfer between gases and carbon defects of amorphous or disordered regions. The response of the amorphous CDC-600 film to NH(3) was 45% without prior oxidation, showing amorphous CDCs have promise as chemical sensors without additional pretreatment common to other carbon sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...